
Concepts of Parallel and Distributed Database Systems

Key concepts:

- concept and structure of parallel and distributed databases
- motivations for parallelism and distribution
- types of parallelism
- benefits of DDBMS
- drawbacks of DDBMS
- Date’s rules
- local autonomy
- function distribution
- continues operation
- location independence
- fragmentation independence
- replication independence
- overview of query processing
- overview of distributed transaction management
- hardware independence
- DBMS independence
- Distribution transparency
- Replication transparency
- Fragmentation transparency
- history of parallel databases
- history of distributed databases

Parallel and Distributed Databases

• A parallel database aims principally linear speedup and
scaleup:

Linear scaleup refers to a sustained performance for a
linear increase both in database size and processing and
storage power.
Linear speedup refers to a linear increase in
performance for a constant database size.

• Sharing data is the key of a distributed DB →
cooperative approach

Since data is distributed, users that share that data can
have it placed at the site they work on, with local
control (Local autonomy)

• Distributed and parallel databases improve reliability
and availability

I.e. they have replicated components and thus eliminate
single points of failure.

• The distribution of data and the parallel/distributed
processing is not visible to the users → transparency

• Distributed Database (DDB)

A collection of multiple, logically interrelated
databases distributed over a computer network

• Distributed Database Management System
(D-DBMS)

The software system that permits the management of
the DDB and provides an access mechanism that makes
this distribution transparent to the users.

• Distributed Database System (DDBS)

DDBS = DDB + D-DBMS

• What is not a DDBS: A database system which resides
on

• a timesharing computer system
• a loosely or tightly coupled multiprocessor system
• one of the nodes of a network of computers - this is a

centralised database on a network node

Reasons of data distribution

• Improved reliability and availability through distributed
transactions

• Improved performance

• Allowing data sharing while maintaining some measure
of local control

• Easier and more economical system expansion

• Distributed nature of some database applications

Additional functionality of a D-DBMS

• Distribution leads to increased complexity in the system
design and implementation

• D-DBMS must be able to provide some additional
functionality to those of a central DBMS:

• To access remote sites and transmit queries and data among the
various sites via a communication network.

• To keep track of the data distribution and replication in the
DDBMS catalog.

• To devise execution strategies for queries and transactions that
access data from more than one site.

• To decide on which copy of a replicated data item to access.
• To maintain the consistency of copies of a replicated data item.
• To maintain the global conceptual schema of the distributed
database.

• To recover from individual site crashes and from new types of
failures such as failure of a communication link.

Distributed DBMS Issues

• Distributed Database Design

• how to distribute the database
• replicated & non-replicated database distribution
• a related problem in directory management

• Query Processing

• convert user transactions to data manipulation instructions
• optimisation problem
• min{cost = data transmission + local processing}
• general formulation is NP-hard

• Concurrency Control

• synchronisation of concurrent accesses
• consistency and isolation of transactions' effects
• deadlock management

• Reliability

• how to make the system resilient to failures
• atomicity and durability

Date’s 12 rules for distributed database systems

Rule 0: to the user, a distributed system should look
exactly like a non-distributed system

other rules:

1. Local autonomy

2. No reliance on central site

3. Continuous operation

4. Location independence

5. Fragmentation independence

6. Replication independence

7. Distributed query processing

8. Distributed transaction management

9. Hardware independence

10. Operating system independence

11. Network independence

12. DBMS independence

The great principles are:

Autonomy, Independence and Transparency.

Rule 1: Local Autonomy

Autonomy objective: Sites should be autonomous to the
maximum extent possible.

• Local data is locally owned and managed, with local
accountability

• security considerations
• integrity considerations

• Local operations remain purely local

• All operations at a given site are controlled by that site;
no site X should depend on some other site Y for its
successful functioning

Otherwise, if site Y is down, site X could not carry out
the operation although there is nothing wrong at site X.

• In some situations some slight loss of autonomy is
inevitable

• fragmentation problem – rule 5
• replication problem – rule 6
• update of replicated relation – rule 6
• multiple-site integrity constraint problem – rule 7
• a problem of participation in a two-phase commit process –

rule 8

In consequence: All data ‘really’ belongs to some local
database even it is accessible from remote.

Rule 2: No reliance on central site

There must not be any reliance on a central ‘master’ site
for some central service, such as centralised query
processing or centralised transaction management, such
that the entire system is dependent on that central site.

• Reliance on a central site would be undesirable for at
least the following two reasons:

• that central site might be a bottleneck
• the system would be vulnerable

• In a distributed system therefore, the following
functions (among others) must all be distributed:

• Dictionary management
• Query processing
• Concurrency control
• Recovery control

Rule 3: Continuous operation

There should ideally never be any need for a planned
entire system shutdown .

• Incorporating a new site into an existing distributed
system should not bring the entire system to a halt

• Incorporating a new site into an existing distributed
system should not require any changes to existing user
programs or terminal activities

• Removing an existing site from the distributed systems
should not cause any unnecessary interruptions in
service

• Within the distributed system, it should be possible to
create and destroy fragments and replicas of fragments
dynamically

• It should be possible to upgrade the DBMS at any given
component site to a newer release without taking the
entire system down

•

Rule 4: Location independence (Transparency)

Users should not have to know where data is physically
stored but rather should be able to behave – at least from a
logical standpoint – as if the data was all stored at their
own local site.

• Sometimes referenced as Transparency

• Simplifies user programs and terminal activities

• Allows data to migrate from site to site

• It is easier to provide location independence for simple
retrieval operations than it is for update operations

• Distributed data naming scheme and corresponding
support from the dictionary subsystem

• User naming scheme

• An user has to have a valid logon ID at each of multiple
sites to operate

• User profile for each valid logon ID in the dictionary
• Granting of access privileges at each component site

•

Rule 5: Fragmentation independence (Transparency)

• A distributed system supports data fragmentation if a
given relation can be divided up into pieces or
‘fragments’ for physical storage purposes

• A system that supports data fragmentation should also
support fragmentation independence (also known as
fragmentation transparency)

Users should be able to behave (at least from a
logical standpoint) as if the data were in fact not
fragmented at all.

• Fragmentation is desirable for performance reasons

• Fragmentation must be defined within the context of a
distributed database

• Fragmentation independence (like location
independence) is desirable because it simplifies user
programs and terminal activities

• Fragmentation independence implies that users should
normally be presented with a view of the data in which
the fragments are logically combined together by
means of suitable joins and unions

Fragmentation principles

• Two basic kinds of fragmentation

• Horizontal fragmentation
• refers to cut between tuples
• achieved by selection
• same as data partitioning in parallel databases
• efficient for parallel scanning of the relation

• Vertical fragmentation
• refers to the cut of the schema

• achieved by a projection
• efficient if there is frequent access to different attribute groups

• The union of the horizontal fragments should be the
original relation

• The join of the vertical fragments should be the original
relation

!!! Supplemental measure must be undertaken to
guarantee that the join is nonloss!

E.g. the fragmentation of the table
Employee(Emp#, Dept#, Salary) into the fragments
Emp#, Dept# and Salary would not be valid, since there
is no common join-attribute.

Solutions are either to duplicate the key or to introduce
a hidden ‘tupleID’ where the TID is the physical or
logical address for that tuple. This TID is then included
in all fragments.

Rule 6: Replication independence (Transparency)

User should be able to behave as if the data were in fact
not replicated at all.

• A distributed system supports data replication if a given
relation (more generally, a given fragments of a
relation) can be represented at the physical level by
many distinct stored copies or replicas, at many distinct
sites.

• Replication, like fragmentation, should be “transparent
to the user”

• Replication is desirable for at least two reasons:

• Performance: applications can operate on local copies
instead of having communicate with remote sites (or a
‘nearest’ copy can be fetched.

• Availability: a given replicated object remains available for
processing as long as at least one copy remains available.

• Update propagation problem!

• Fragmentation independence (like all transparency
rules) is desirable because it simplifies user programs
and terminal activities

Update propagation problem
• The major disadvantage of replication is, of course,

when a given replicated object is updated, all copies of
that object must be updated.

→ Update propagation problem.

• A common scheme for dealing with this problem is the
so-called primary copy scheme:

• One copy of each replicated object is designated as the primary
copy. The remainder are all secondary copies.

• Primary copies of different objects are at different sites (so the
distributed scheme once again).

• Update operations are deemed logically complete as soon as the
primary copy has been update. The site holding the copy is then
responsible for propagating the update to the secondary copies at
some subsequent time.

• The 'subsequent' time must be prior to COMMIT,
however, if the ACID properties of the transaction are
to be preserved →

Inconsistency ?! (see below: transaction processing).

Rule 7: Distributed query processing

It is crucially important for distributed database systems to
choose a good strategy for distributed query processing.

• Query processing in a distributed system involve

• local CPU and I/O activity at several distinct sites
• some amount of data communication among those sites

• Amount of data communication is a major performance
factor. Depending on the bandwidth and the relation
sizes the minimal communication cost strategy will be
chosen.

• Distributed query processing and query optimisation
must be aware of the distributed context:

• Where is a relation (fragment) stored?
• Are there any replicas?

• Query compilation ahead of time

• Views that span multiple sites

• Integrity constraints within a DDBS that span multiple
sites

Rule 8: Distributed transaction management

Two major aspects of transaction management, recovery
control and concurrency control, require extended
treatment in the distributed environment

• In a distributed system, a single transaction can involve
the execution of code at multiple sites and can thus
involve updates at multiple sites

• Each transaction is therefore said to consist of multiple
“agents”, where an agent is the process performed on
behalf of a given transaction at a given site

• Recovery Control: In order to ensure that a given
transaction is atomic in the distributed environment,
therefore, the system must ensure that the set of agents
for that transaction either all commit in unison or all
roll back in unison.

That effect can be achieved by means of the two-phase
commit protocol.

• Concurrency Control: is based in most distributed
systems on locking (some implemented multi-version
control ..., read can have the last version)

Recovery control: Two-phase commit protocol

• In general, the two-phase commit protocol is driven,
whenever a transaction interact with several
independent 'resource manager', i.e. each managing its
own set of recoverable resources and maintaining its
own recovery log.

• FIRST PHASE: Each site must force-write all log
entries for local resources used by the transaction out to
its physical log. Assuming the force-write is successful,
each site gives the OK.

• SECOND PHASE: If the site where the transaction has
been submitted receives all the OK form the other sites,
it force-writes an entry to its own physical log.

If anything has gone noOK, then general ROLLBACK
otherwise the decision is COMMIT DONE.

• Remark 1: If site Y acts as a participant in a two-phase
commit coordinated by site X, then Y must do what is
told by site X (roll-back) – a (minor) loss of local
autonomy.

• Remark 2: If one of the messages get lost (e.g.
ROLLBACK) then the system is an inconsistent state.
In general there can be no protocol that can guarantee
that all agents will commit unison.

Concurrency control: Primary Copy approach

• Lock means: Requests to test, set and release locks.
Update means update and acknowledgement.

• Consider for example a transaction that needs to update
an object for which exists replicas at n sites. A
straightforward implementation will require:

n lock requests; n lock grants; n update messages;
n acknowledgements; n unlock requests

makes 5*n messages (could of course be piggy-picked)

• Use the primary copy: Lock only the primary copy (one
lock request, one lock grant and one unlock) and the
site with the primary copy handles the updating (2*n
messages).

Thus we got only 2*n+3 messages.

• Remark 1: Loss of autonomy: A transaction can fail
now if a primary copy is unavailable, and a secondary
copy exists at the local site.

• Remark 2: Inconsistency is introduced if all secondary
copies are not updated prior to the COMMIT point.

Unfortunately, many commercial products support a less
ambitious form of replication in which the update propagation
is guaranteed to be done at some future time. They put the
term replication (performance) against two-phase commit
protocol.

Rule 9-11: Hardware, OS and Network Independence

User should be presented with the “single-system image”
regardless any particular hardware platform, operating system
and network.

• It is desirable to be able to run the same DBMS on
different hardware systems which all participate as
equal partners (where appropriate) in a distr. system.

The strict homogeneity assumption is not relaxed; it is still
assumed that the same DBMS is running on all those different
hardware systems.

• From a commercial point of view, the most important
operating system environments, and hence the ones that
(at a minimum) the DBMS should support, are
probably MVS/XA, MVS/ESA, VM/CMS, VAX/VMS,
UNIX (various flavours), OS/2, MS-DOS, Windows

• From the D-DBMS viewpoint, the network is merely
the provider of a reliable message transmission service.

By “reliable” here is meant that, if the network accepts a
message from site X for delivery to site Y, then it will
eventually deliver that message to site Y.

Messages will not be garbled, will not be delivered more than
once and will be delivered in the order sent.

The network should also be responsible for site
authentication.

Rule 12: DBMS independence

Ideal distributed system should provide DVBMS independence
(or transparency).

• The obvious fact is that not only the real-world
computer installations typically run on many different
machines and with many different operating systems,
but very often run with different DBMSs as well.

• All that is really needed is that the DBMS instances at
different sites all support the same interface.

• Consider an example: Suppose that site X is running
INGRES and site Y is running ORACLE. Some user at
site X desires to see a single distributed database that
includes data from INGRES (site X) and ORACLE
from site Y. By definition user U is a an INGRES user
and the distributed database must therefore be an
INGRES database.

• The solution is quite straightforward: INGRES must
provide an application program (gateway) that runs
upon ORACLE and has the effect of 'making ORACLE
look like INGRES'.

• Implementing protocols for the exchange of information
between INGRES and ORACLE involves first the
understanding of the messages in which SQL sources
are sent form INGRES and translated to ORACLE
statements and mapping ORACLE results (data values,
return codes, ...) into the messages format that INGRES
expects.

Types of parallelism in database systems

• Interquery parallelism

Multiple queries generated by concurrent transactions
can be executed parallel.

• Interoperation parallelism

A query may consist of multiple, independent
operations that can be executed parallel. There are two
forms of interoperation parallelism:

• Independent

• Pipeline

• Intraoperation parallelism

An operator may be executed as many small,
independent sub-operations. The relational model is
ideal for implementing intraoperator parallelism.

This is the most important type of parallelism, since
generally there are much more data tuples than
relational operations.

Intraoperation parallelism comes from data partitioning.

Types of parallelism in database systems

Select Select

Select Select

Inter-operator

Intra-operator
pipeline

