Introduction


One of the most important tasks in the analysis and design of industrial control systems is the mathematical modelling of that system. When one speaks about a system, some borderlines are established that delimit that system from its environment. Also some physical variables have to be mentioned in correlation with the actions (input signals) and reactions (output signals) that characterise the interactions (in form of energy changes) between that system and its environment (Figure 1.).
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Figure 1. Block representation of a system and its connections


As far as for control or information engineering the system represents generally an (industrial) process, we must analyse always the system with its dependence in time, though as a dynamic system or dynamic model.


Mathematical modelling means to find out the mathematical relations that characterise the internal structure of the delimited system and to describe the interdependencies between the input and output variables. This can be achieved either by quantitative modelling or by qualitative modelling.


As we will see later, quantitative models of systems (processes) can be obtained in two basic ways: by theoretical modelling and by experimental modelling of that system. Many times the two methods are combined in engineering practice.


Theoretical modelling (analysis) presupposes the knowledge of essential physical laws of that process. This has to be quite profound in order to obtain a satisfying process model. The model is found out by determining the independent and dependent variables and by stating between them some balance equations, phenomenological laws, state equations that, in general, lead to a system of ordinary and/or partial differential equations (for continuous signals) or system of difference equations (for discrete signals). Its advantage lies in availability of modelling during the planning period of the system since the method does not need the existence of a real process. In this phase it is also important to find out the influence of different design parameters on the process behaviour (performance).


In order to obtain a theoretical model that can be handled easily and solved (computed) explicitly, some proper assumptions and approximations, whenever necessary, are always made (or recommended to be made). Linearization and simplification of the theoretical model (reduction of order, assumption of lumped, time invariant parameters, etc.) are the most common methods in use.


Experimental modelling (analysis) is known in the literature as process identification. For identification the process (system) has to be ready for operation and suitable signal generating and recording devices must be available. The mathematical model is determined from the measured signals by using adequate identification methods. The identification methods work with discrete-time signals, therefore they always lead to discrete-time models, that make further computer simulations easy. Applying process identification, often higher model performance can be reached, especially for linearizable processes with less or poor knowledge about their internal behaviour (for example processes in chemical or power-engineering).


In recent years, using off-line and on-line computers, various methods for process identification have been extensively developed. Linear or either non-linear systems with or without perturbation signals were tested in practice and the results have sufficient accuracy in order to perform a good model.


As far as for industrial application the invested effort plays an important role by its impact on the final costs, the two quantitative modelling methods are often combined.


Qualitative modelling represents the most recently developed and still under further research domain in finding out mathematical models for systems. The qualitative modelling approach is based on human experience, on knowledge, on pattern recognition. Expert systems, fuzzy sets and neural networks are some keywords that require at least powerful computer tools for successful modelling. A separate, somehow introductory chapter will be devoted to this approach.


Next, we will describe the different quantitative mathematical model descriptions, we will summarise the solving methods (determining the explicit relations between the input and output variables) and we will point out the modelling methods that lead mainly to computer solutions. Our approaches will follow the way from simple to more complex descriptions and will include some necessary mathematical background knowledge, too. As far as we considered necessary, we included some illustrative examples in order to help the reader in better understanding.


Input-output description of linear systems


Continuous, time-invariant models


Time is always the independent variable in describing mathematical models of dynamic systems. For linear continuous time-invariant systems with one input and one output the mathematical model appears as a differential equation of general form:


� EINBETTEN Equation.2  ���	(1.1)


where � EINBETTEN Equation.2  ��� represents the input signal or the excitation function of the system and � EINBETTEN Equation.2  ��� means the output signal or the response function of the system because it represents the response to the excitation function. The coefficients � EINBETTEN Equation.2  ��� (� EINBETTEN Equation.2  ���) and � EINBETTEN Equation.2  ��� (� EINBETTEN Equation.2  ���) are real and constant numbers. For models of physical systems it is easy to verify that � EINBETTEN Equation.2  ��� (condition of causality). Note that the coefficient � EINBETTEN Equation.2  ��� was not explicitly written as it was considered having unitary value. If it is not so, it is an easy matter to divide each term of the equation by it to yield the mentioned form of Equation (1.1).


There are many ways of solving differential equations like Equation (1.1). Since it is a linear non-homogeneous differential equation, its general solution is a solution of the form:


� EINBETTEN Equation.2  ��� ,	(1.2)


where � EINBETTEN Equation.2  ��� represents the solution of the homogeneous differential equation, and � EINBETTEN Equation.2  ��� is one particular solution of Equation (1.1). Both parts of the solution are time functions. For real (control) systems we use to define them as � EINBETTEN Equation.2  ��� - the transient response and � EINBETTEN Equation.2  ��� - the steady-state response, respectively.


These notations have some practical interpretations:


	- a) the transient response is defined as the part of the solution (the homogeneous differential equation’s solution) that does not depend on the input (exciting) signal � EINBETTEN Equation.2  ���. That’s why it is called also as free response. It will reflect only the internal structure, the internal connections of that system. So, it will point out the dynamic behaviour of the unexcited system.


Physical systems exhibit this transient behaviour since they cannot follow sudden changes in their accumulated energy and as far as in their structure inertia, mass, inductance, etc. cannot be avoided. Also, there are no infinite valued energy sources or infinite amplitude signals. It is of very importance to note these together with the fact that most physical systems present this transient response going to zero as the time becomes large. This property is known as stability. How long the transient response does take in time could be a measure of the dynamic behaviour of that system.


For example, in control systems the transient response appears as the difference between the real output (response) of that system and the desired (set-point) one, before the steady-state is reached. In control it is of importance to closely watch the transient response in order to assure the desired dynamic behaviour.


	b) the steady-state response is correlated to the particular solution of Equation (1.1) and directly depends on the input while it will represent the state to which the input (excitation) of the system will force the output. That’s why it is called also as forced response.


There has not been entirely standardised the definition of the steady-state. It can be stated that the steady-state response is that part of the solution given by Equation (1.2) that remains after the transient has died out. If the transient does not go to zero (or in extreme to a finite value) there is worthless to speak about the steady-state response as far as the transient reaches infinity. For physical systems this leads to the increase of output signal amplitude that can be correlated with the increase of the accumulated energy in that system. Fortunately, most physical systems present saturation (as non-linear behaviour) that limits the accumulated energy value. Otherwise, structural changes of that system are expected with all theirs (wanted or not!) consequences.


We have to note that the steady-state does not imply constant values with respect to time. In many control systems for example, when a response has reached its steady-state it can still vary with time. Therefore, in control systems the steady-state response is known as the fixed response when time reaches infinity. The steady-state response when compared to the input gives an indication of the final accuracy of the controlled system. If the two values do not agree, the system is said to have a steady-state error.


Solving homogeneous differential equations with constant coefficients


The homogeneous differential equation is obtained from Equation (1.1) by equalling the right-hand side with zero:


� EINBETTEN Equation.2  ��� .	(1.3)


The general solution of Equation (1.3) is a function of the form:


� EINBETTEN Equation.2  ���,	(1.4)


where � EINBETTEN Equation.2  ���are the n linearly independent (particular) solutions that form a basis (or fundamental system) on the real domain of the independent variable t (time).


The problem now is how to find out the n linearly independent solutions.


The general method starts with substitution of � EINBETTEN Equation.2  ��� and its derivatives (note that � EINBETTEN Equation.2  ���!) and leads to the characteristic equation of Equation (1.3):


� EINBETTEN Equation.2  ���.	(1.5)


The way to obtain the desired n linearly independent solutions presupposes to find out the roots of the characteristic Equation (1.5). A practical problem for higher n is the determination of these roots. Sometimes one can find roots by inspection and then reduce the order of polynomial by division. In general this is not the right way and one will have to apply numerical iterative methods. Special computer programs are of real usefulness.


The solution of the homogeneous differential Equation (1.3) is as follows:


- a) the characteristic equation has n distinct (real) roots � EINBETTEN Equation.2  ��� .


There will be n different, linearly independent solutions:


� EINBETTEN Equation.2  ���	(1.6)


The solution of Equation (1.3) can be written directly as:


� EINBETTEN Equation.2  ���,	(1.7)


where � EINBETTEN Equation.2  ��� are n integrating constants that should be determined from the initial (or extreme) conditions.


- b) the characteristic equation has simple complex roots.


If complex roots occur, they must occur in conjugate pairs since the coefficients of Equation (1.4) are real. Thus, if � EINBETTEN Equation.2  ��� is a simple root, so it is the complex conjugate � EINBETTEN Equation.2  ���. There will be two corresponding linearly independent solutions:


� EINBETTEN Equation.2  ��� .	(1.8)


The corresponding part of the solution of Equation (1.3) can be written as:


� EINBETTEN Equation.2  ���	(1.9)


Illustrative example:


Solve the homogeneous differential equation:


� EINBETTEN Equation.2  ���,


with initial conditions � EINBETTEN Equation.2  ���. (The dot substitutes the time derivative.)


Solution:


The characteristic equation is: � EINBETTEN Equation.2  ���.


One root is � EINBETTEN Equation.2  ���, the others are complex conjugate � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���.


The corresponding linearly independent solutions are:


� EINBETTEN Equation.2  ���


The general solution and its derivatives are:


� EINBETTEN Equation.2  ��� ,


� EINBETTEN Equation.2  ��� ,


� EINBETTEN Equation.2  ��� .


Substituting the initial conditions, one obtains: � EINBETTEN Equation.2  ���, � EINBETTEN Equation.2  ���, � EINBETTEN Equation.2  ���.


Hence � EINBETTEN Equation.2  ���, � EINBETTEN Equation.2  ���,� EINBETTEN Equation.2  ���, the desired solution (answer) is:


� EINBETTEN Equation.2  ��� .


- c) the characteristic equation has multiple real roots.


If � EINBETTEN Equation.2  ��� is a root of order q, then the corresponding q linearly independent solutions are:


� EINBETTEN Equation.2  ���.	(1.10)


The corresponding part of the solution of Equation (1.3) can be written as:


� EINBETTEN Equation.2  ��� .	(1.11)


d) the characteristic equation has multiple complex roots.


In this case the corresponding linearly independent solutions are obtained combining the methods for complex simple roots and multiple real roots. Thus, if � EINBETTEN Equation.2  ��� is a complex double root, so it is the complex conjugate � EINBETTEN Equation.2  ���. The corresponding linearly independent solutions are:


� EINBETTEN Equation.2  ���,	(1.12)


as well as the corresponding part of the solution given by Equation (1.3) is:


� EINBETTEN Equation.2  ��� .	(1.13)


For complex triple roots (that hardly ever occur in applications!) one would obtain two more solutions: � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���. The method can be easily extended.


Finding particular solutions of non-homogeneous differential equations


Method of undetermined coefficients


The method of undetermined coefficient is simple. It applies to differential equations with constant coefficients like Equation (1.1), where the right-hand side is a polynomial, an exponential function, a sine or a cosine or a linear combination of such functions.


The key idea of the method is to apply the superposition principle and assume for every term of � EINBETTEN Equation.2  ��� an expression similar to that of the considered term from the right-hand side, involving unknown coefficients that one must determine by substitution of the considered � EINBETTEN Equation.2  ��� into the equation. This should work well for functions � EINBETTEN Equation.2  ��� whose derivatives are of the similar kind as � EINBETTEN Equation.2  ��� itself, which is the case for the functions just mentioned and the case for the deterministic signals used in system theory.


In engineering practise the input signals can be approximated by such functions (polynomial approximation, expansion in Taylor series, expansion in Fourier series, etc.).





Table 1.1. Method of undetermined coefficients


Term in right-hand side�
Choice for � EINBETTEN Equation.2  ����
�
� EINBETTEN Equation.2  ����
� EINBETTEN Equation.2  ����
�
� EINBETTEN Equation.2  ����
� EINBETTEN Equation.2  ����
�
� EINBETTEN Equation.2  ����
� EINBETTEN Equation.2  ����
�
� EINBETTEN Equation.2  ����
� EINBETTEN Equation.2  ����
�









The rule is as follows: If the right-hand side of differential Equation (1.1) is a sum of functions listed in several lines of Table 1.1. first column, then choose for � EINBETTEN Equation.2  ��� the sum of the functions in the corresponding lines of the second column. If a choice term for � EINBETTEN Equation.2  ��� is a solution of the homogeneous equation, then multiply your choice of � EINBETTEN Equation.2  ��� by t (the independent variable) as many times as the multiplicity number of that solution. Find out the unknown coefficients by substituting the chosen � EINBETTEN Equation.2  ��� in the original differential equation.


Illustrative example:


Solve the differential equation � EINBETTEN Equation.2  ��� with zero initial conditions.


Solution:


The characteristic equation has the double real root � EINBETTEN Equation.2  ���. The solution of homogeneous equation equals to:


� EINBETTEN Equation.2  ���.


We have to determine the particular solution � EINBETTEN Equation.2  ���, too.


By Table 1.1., the term t indicates a particular solution choice: � EINBETTEN Equation.2  ���.


Since � EINBETTEN Equation.2  ��� is a double root of the characteristic equation, the term � EINBETTEN Equation.2  ��� calls for the particular solution � EINBETTEN Equation.2  ��� (instead of � EINBETTEN Equation.2  ���). Together results:


� EINBETTEN Equation.2  ���.


Substituting in the original differential equation, one obtains:


� EINBETTEN Equation.2  ���.


Hence � EINBETTEN Equation.2  ���, the general solution is:


� EINBETTEN Equation.2  ���.


Since the initial conditions are zero, we have to determine the constants � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���. By substitution with � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� results � EINBETTEN Equation.2  ���, � EINBETTEN Equation.2  ���.


The solution will be:


� EINBETTEN Equation.2  ���.


Complex method for particular solutions


As we will see later, in engineering applications often the input signal is a harmonic signal and the problem is to get the particular solution for a linear model of Equation (1.1), where the right-hand side is a simple function of sine or cosine. Table 1.1 shows that the particular solution in this case is of form � EINBETTEN Equation.2  ���. The problem lies in determining � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���, This is made by substitution and leads often to hard calculus. Instead this it is preferred to use the complex method that applies the Euler formula:


� EINBETTEN Equation.2  ��� .	(1.14)


It is obvious to consider instead the harmonic function the exponential form and to determine the intermediary (complex) particular solution of the form:


� EINBETTEN Equation.2  ���	(1.15)


and then to extract the particular solution from the real or imaginary part of the complex particular solution.


Illustrative example:


Determine the steady-state alternative current � EINBETTEN Equation.2  ��� in a serial RLC-circuit that has as input signal an alternative voltage: � EINBETTEN Equation.2  ���.


Solution:


Applying Kirchoff’s voltage law for the serial RLC-circuit, we can write:


� EINBETTEN Equation.2  ���.


To get rid of the integral, we differentiate with respect to t, obtaining:


� EINBETTEN Equation.2  ���,


where the input voltage already was substituted and the forcing function is a cosine one.


To work with the complex method, we substitute the harmonic function and obtain the corresponding complex equation:


� EINBETTEN Equation.2  ���.


The function of the right hand side suggests a particular solution of the form:


� EINBETTEN Equation.2  ���.


By substituting this function and its time derivatives


� EINBETTEN Equation.2  ���


into the complex differential equation, we obtain:


� EINBETTEN Equation.2  ���.


Dividing by � EINBETTEN Equation.2  ��� on both sides and solving for � EINBETTEN Equation.2  ���, we obtain:


� EINBETTEN Equation.2  ��� ,


where � EINBETTEN Equation.2  ��� is the well-known complex impedance, given by:


� EINBETTEN Equation.2  ���.


The imaginary part of � EINBETTEN Equation.2  ��� is the reactance � EINBETTEN Equation.2  ���. Thus we can write:


� EINBETTEN Equation.2  ��� , � EINBETTEN Equation.2  ���.


Consequently, the particular solution according to the complex equation is:


� EINBETTEN Equation.2  ���.


The real part of this solution will represent the particular solution for the original differential equation or the steady-state for the considered RLC-circuit:


� EINBETTEN Equation.2  ���.


Since


� EINBETTEN Equation.2  ���


and, furthermore


� EINBETTEN Equation.2  ��� ,� EINBETTEN Equation.2  ��� ,


the particular solution � EINBETTEN Equation.2  ��� can be written in the form:


� EINBETTEN Equation.2  ���.


This result is to be obtained also if the method of undetermined coefficients is applied.
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