Solving of linear differential equations using differential operator


By an operator we mean a transformation that transforms a function into another function. As we will see, operators and the corresponding techniques, called operational methods play an important role in engineering mathematics.


Differentiation (in our case with respect to time) suggests an operator, that we call differential operator and note:


� EINBETTEN Equation.2  ��� ,	(1.16)


as it transforms a (time) function that is assumed differentiable into its derivative. Applying the � EINBETTEN Equation.2  ��� operator twice, we obtain the second derivative, and so on. That means that the differential equation of Equation (1.1) becomes:


� EINBETTEN Equation.2  ���	(1.17)


Solving Equation (1.17) for � EINBETTEN Equation.2  ��� gives:


� EINBETTEN Equation.2  ���,	(1.18)


where the denominator � EINBETTEN Equation.2  ��� is the characteristic function or characteristic polynomial of the differential equation of Equation (1.1). The equation which results by setting the characteristic polynomial equal to zero will give the characteristic equation similar to Equation (1.5) that means that the operator � EINBETTEN Equation.2  ��� can be treated as an algebraic quantity.


The polynomial � EINBETTEN Equation.2  ��� can be factored into the form:


� EINBETTEN Equation.2  ���,	(1.19)


where � EINBETTEN Equation.2  ��� are the roots (real or complex) of the equation � EINBETTEN Equation.2  ���. The roots are also called the zeros of the function � EINBETTEN Equation.2  ���. The zeros of � EINBETTEN Equation.2  ��� are said to be distinct if each zero has a different value. When two or more zeros are equal, the characteristic function (polynomial) is said to have repeated zeros.


The solution for Equation (1.1) is obtained somehow in different ways for the two cases. For simplicity, only the case of real zeros and � EINBETTEN Equation.2  ��� will be considered.


	a) � EINBETTEN Equation.2  ��� has distinct zeros


For distinct zeros the polynomial fraction � EINBETTEN Equation.2  ��� in Equation (1.18) may be written into the form:


� EINBETTEN Equation.2  ��� .	(1.20)


The procedure for obtaining any constant � EINBETTEN Equation.2  ��� is as follows: first multiply both sides of Equation (1.20) by � EINBETTEN Equation.2  ��� to cancel the denominator thus leaving � EINBETTEN Equation.2  ��� alone, and then by setting � EINBETTEN Equation.2  ��� all terms of the right-hand side of Equation (1.20) become zero, except � EINBETTEN Equation.2  ���, that remains. Thus:


� EINBETTEN Equation.2  ��� .	(1.21)


Successive application of Relation (1.21), in which � EINBETTEN Equation.2  ���, yields each of the constants � EINBETTEN Equation.2  ���, respectively. So, the general form for expressing a differential equation of order n as a sum of first-order differential equations is obtained. That is:


� EINBETTEN Equation.2  ���	(1.22)


where:


� EINBETTEN Equation.2  ���.	(1.23)


The first order differential equation results easily from Equation (1.23):


� EINBETTEN Equation.2  ���,	(1.24)


and substituting the � EINBETTEN Equation.2  ��� operator, the first-order differential equation occurs:


� EINBETTEN Equation.2  ���,	(1.25)


The solution results by multiplying both sides of Equation (1.25) by � EINBETTEN Equation.2  ���. That is:


� EINBETTEN Equation.2  ���.	(1.26)


Integration yields:


� EINBETTEN Equation.2  ���,	(1.27)


where � EINBETTEN Equation.2  ��� is the constant of integration. As the constant of integration is displayed separately in Equation (1.27), it suffices to evaluate the integral at time t only. Solving for � EINBETTEN Equation.2  ��� gives:


� EINBETTEN Equation.2  ���.	(1.28)


Substitution of Equation (1.28) in Equation (1.22) yields the general solution:


� EINBETTEN Equation.2  ���	(1.29)


where � EINBETTEN Equation.2  ��� is a constant. Comparing the result to Equation(1.2) and/or Equation (1.7) one may write:


� EINBETTEN Equation.2  ���	(1.30)


and


� EINBETTEN Equation.2  ���,	(1.31)


where � EINBETTEN Equation.2  ��� is the homogeneous differential equation’s solution (the transient response or complementary solution) and � EINBETTEN Equation.2  ��� is the particular solution (or the steady-state response).


	b) � EINBETTEN Equation.2  ��� has repeated zeros


Suppose that the characteristic polynomial � EINBETTEN Equation.2  ��� has a multiple or repeated zero � EINBETTEN Equation.2  ��� which occurs � EINBETTEN Equation.2  ��� times. in this case the factoring of � EINBETTEN Equation.2  ��� yields:


� EINBETTEN Equation.2  ���,	(1.32)


The partial-fraction expansion in this case has the general form:


� EINBETTEN Equation.2  ���	(1.33)


The constants � EINBETTEN Equation.2  ��� are evaluated in similar mode as before by application of Relation (1.21). The constants � EINBETTEN Equation.2  ��� that arise from the partial-fraction expansion of the repeated zero, are evaluated with the relation:


� EINBETTEN Equation.2  ���	(1.34)


The portion of the response due to the term i (� EINBETTEN Equation.2  ���) in Equation (1.33) of form:


� EINBETTEN Equation.2  ���	(1.35)


will be of form:


� EINBETTEN Equation.2  ���,	(1.36)


where the constants � EINBETTEN Equation.2  ��� must be evaluated from the initial conditions. The first term in Equation (1.36) containing the c constants is the complementary (homogeneous) solution (transient response), whereas the second term containing the integrals is the particular solution (forced or steady-state response). Both are due to the considered i-th component of partial-fraction expansion (or elementary differential equations).


The response due to the distinct zeros in Equation (1.33) may be evaluated by application of Relation (1.29).


Illustrative example


Solve the following operator defined differential equation: � EINBETTEN Equation.2  ���, when all initial conditions are zero and the input function is � EINBETTEN Equation.2  ���.


Solution:


In our example � EINBETTEN Equation.2  ���. Rewrite the equation in the form of Equation (1.33) and get:


� EINBETTEN Equation.2  ���


Determine the coefficients:


� EINBETTEN Equation.2  ���


Equation (1.36) yields for the response due to the first term of partial fraction expansion:


� EINBETTEN Equation.2  ���.


The response due to the second term is:


� EINBETTEN Equation.2  ���.


Application of Equation (1.33) yields for the response due to the last term:


� EINBETTEN Equation.2  ���.


The general solution will be the sum of these three responses:


� EINBETTEN Equation.2  ���


where:


� EINBETTEN Equation.2  ��� .


The constants � EINBETTEN Equation.2  ��� are to be determined from the initial conditions. Successive differentiation of the general solution yields:


� EINBETTEN Equation.2  ���


The initial conditions are zero, so:


� EINBETTEN Equation.2  ���


Solving the system of three equations, results: � EINBETTEN Equation.2  ���.


Thus the desired result is:


� EINBETTEN Equation.2  ���.
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