Solving linear differential equations using the Laplace transforms


The method of Laplace transforms, that is described below is somehow the best suited for solving the type of problems given by Equation (1.1) (linear continuous time-invariant models) which are of interest in general for control engineers. In many ways the Laplace transform method is similar to the preceding method of using the partial-fraction expansion to reduce the nth order equation to the sum of n lower-order equations. A major difference is that, in the Laplace transform method, the response due to each term in the partial-fraction expansion is determined directly from the transform table. Thus there is no need to perform the integration indicated by either Equation (1.29) or Equation (1.36). The initial conditions are automatically incorporated into the solution, so the resulting response expression yields directly the total solution (i.e., complementary plus particular solution). Thus, the constants arising from the initial conditions are automatically evaluated and the final desired result is obtained directly.


The process of finding the solution of (1.1) consists of three main steps:


1., The given differential equation is transformed into a „simple“ algebraic equation of variable s (the Laplace transforms’ variable) by using the direct Laplace transform.


2., The algebraic equation is solved by pure algebraic manipulations.


3., The solution of algebraic equation is transformed back (using the inverse Laplace transform) to obtain the solution in time-domain of the given model.


We have to note here that in control engineering the information obtained in s-domain after applying the Laplace transform to Equation (1.1) suffices in many cases, so that it may be unnecessary to invert back to the time-domain.


The Laplace transform


Given the function � EINBETTEN Equation.2  ��� the Laplace transform of � EINBETTEN Equation.2  ��� is defined as:


� EINBETTEN Equation.2  ���,	(1.37)


where � EINBETTEN Equation.2  ��� is the symbol of taking the Laplace transform. To perform the integral, the function � EINBETTEN Equation.2  ��� must be defined and piecewise continuous on every finite interval in the range � EINBETTEN Equation.2  ��� and must satisfy � EINBETTEN Equation.2  ��� for all � EINBETTEN Equation.2  ��� and for some constants � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���.


The variable s is referred to as the Laplace transformation variable or the Laplace operator, so the Laplace transform can be either represented as:


� EINBETTEN Equation.2  ���,	(1.38)


The s variable is a complex number, that is:


� EINBETTEN Equation.2  ���.	(1.39)


The defining Equation (1.37) is also known as one-sided Laplace transform, as the integration is evaluated from � EINBETTEN Equation.2  ��� to � EINBETTEN Equation.2  ���. This simply means that all information contained in � EINBETTEN Equation.2  ��� prior to � EINBETTEN Equation.2  ��� is ignored or considered zero. This assumption does not place any serious limitation on the application of the Laplace transform to linear system problems, since in the usual time-domain studies the time reference is often chosen at the instant � EINBETTEN Equation.2  ���. Furthermore, for physical systems when an input is applied at � EINBETTEN Equation.2  ���, the response of the system does not start sooner than � EINBETTEN Equation.2  ���; the physical system is causal, that is the response does not precede the excitation.


In control system applications some input functions of system are frequently used for investigation. Their Laplace transform pairs are collected in Table 1.2.


Table 1.2. Laplace transform pairs
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�
The inverse Laplace transform


The operation of obtaining � EINBETTEN Equation.2  ��� from the Laplace transform � EINBETTEN Equation.2  ��� is termed the inverse Laplace transformation. The inverse Laplace transformation of � EINBETTEN Equation.2  ��� is denoted by:


� EINBETTEN Equation.2  ���,	(1.40)


where � EINBETTEN Equation.2  ��� is a real constant that is greater than the real parts of all the singularities of � EINBETTEN Equation.2  ���. We have to remember that a singular point of a complex function is the point where the function ceases to be analytic. Equation (1.40) represents a line integral that is to be evaluated in the s-plane (complex plane). However, for most engineering purposes this integral is not employed; the inverse Laplace transform operation can be accomplished simply by referring to the Laplace transform table. Such tables are given in almost every system theory or control engineering book.


Important theorems (properties) of the Laplace transform


The applications of Laplace transform in many instances are simplified by the utilisation of the properties of the transform. In the following these properties are presented shortly as theorems, without proofing them.


1. Linearity of the Laplace transform


The Laplace transformation is a linear operation: for any functions � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� whose Laplace transforms exist and for any constants � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���:


� EINBETTEN Equation.2  ���.	(1.41)


2. Laplace transform of the derivative of � EINBETTEN Equation.2  ���


The Laplace transform of the first derivative of a function � EINBETTEN Equation.2  ��� with respect to t is s times the Laplace transform of � EINBETTEN Equation.2  ��� minus the limit of � EINBETTEN Equation.2  ��� as t approaches � EINBETTEN Equation.2  ���; that is:


� EINBETTEN Equation.2  ���.	(1.42)


The theorem can be generalised. That is, for higher order derivatives:


� EINBETTEN Equation.2  ���	(1.43)


3. Laplace transform of the integral of � EINBETTEN Equation.2  ���


The Laplace transform of the first integral of a function � EINBETTEN Equation.2  ��� with respect to t, is the Laplace transform of � EINBETTEN Equation.2  ��� divided by s; that is:


� EINBETTEN Equation.2  ��� .	(1.44)


In general, for nth-order integration, one get:


� EINBETTEN Equation.2  ��� .	(1.45)


4. Laplace transform of a t-shifted function


The Laplace transform of a function � EINBETTEN Equation.2  ��� shifted by a real value � EINBETTEN Equation.2  ��� is equal to the Laplace transform of � EINBETTEN Equation.2  ��� multiplied by � EINBETTEN Equation.2  ���, that is:


� EINBETTEN Equation.2  ���	(1.46)


The property is also known as real translation.


5. Multiplication by t


The Laplace transform of a function � EINBETTEN Equation.2  ��� multiplied by its variable t is:


� EINBETTEN Equation.2  ��� .	(1.47)


In general, one can write:


� EINBETTEN Equation.2  ��� .	(1.48)


(The last three transforms from Table 1.2. were obtained using this theorem.)


6. Division by t


The Laplace transform of a function � EINBETTEN Equation.2  ��� divided by its variable t is:


� EINBETTEN Equation.2  ��� .	(1.49)


The Formula (1.49) can be also easily extended.


7. Multiplication by � EINBETTEN Equation.2  ���


The Laplace transform of a function � EINBETTEN Equation.2  ��� multiplied by � EINBETTEN Equation.2  ��� is:


� EINBETTEN Equation.2  ���.	(1.50)


The multiplication with � EINBETTEN Equation.2  ��� is transformed into a shift on the s-axis (see Table 1.2)


8. Change of scale


The Laplace transform of � EINBETTEN Equation.2  ��� for � EINBETTEN Equation.2  ��� real is:


� EINBETTEN Equation.2  ���	(1.51)


9. Convolution integral


The Laplace transform of the convolution integral over a time integral t of functions � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� is:


� EINBETTEN Equation.2  ���.	(1.52)


10. Initial-value theorem


If the Laplace transform of � EINBETTEN Equation.2  ��� is � EINBETTEN Equation.2  ��� then:


� EINBETTEN Equation.2  ���.	(1.53)


The initial-value theorem computes the value� EINBETTEN Equation.2  ��� from the transform � EINBETTEN Equation.2  ���. It is to be noted that � EINBETTEN Equation.2  ��� is the initial value only for continuous functions � EINBETTEN Equation.2  ���. Otherwise, it represents the value of the function at a (time) value slightly greater than zero.


11. Final-value theorem


If the Laplace transform of � EINBETTEN Equation.2  ��� is � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� is analytic on the imaginary axis and in the right half of the s-plane, then:


� EINBETTEN Equation.2  ���.	(1.54)


The final value theorem gives the value of� EINBETTEN Equation.2  ��� when � EINBETTEN Equation.2  ��� directly from the Laplace transform � EINBETTEN Equation.2  ���. For dynamic control systems it is very useful in the analysis of the steady-state response, since it gives the final value of the time function as the system response.


However, the final-value theorem is not valid if � EINBETTEN Equation.2  ��� contains any poles (zeroes of denominator) whose real part is zero or positive, which is equivalent to the analytic requirements of � EINBETTEN Equation.2  ��� stated in the theorem. So, one must take care in applying the final-value theorem.
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