Illustrative example


Consider the Laplace transform� EINBETTEN Equation.2  ���:


� EINBETTEN Equation.2  ���.


Find the corresponding � EINBETTEN Equation.2  ���� EINBETTEN Equation.2  ���.


Solution:


a) First method


Let us assume that the values of � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� are such that the non-zero poles of � EINBETTEN Equation.2  ��� are simple and they are complex numbers. Then � EINBETTEN Equation.2  ��� can be expanded as follows:


� EINBETTEN Equation.2  ��� ,


where:


� EINBETTEN Equation.2  ���,


� EINBETTEN Equation.2  ���.


So, � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���.


Then the corresponding coefficients are:


� EINBETTEN Equation.2  ���


� EINBETTEN Equation.2  ���


� EINBETTEN Equation.2  ���


where


� EINBETTEN Equation.2  ��� .


Taking the inverse Laplace transform of the expanded function � EINBETTEN Equation.2  ��� yields:


� EINBETTEN Equation.2  ���


where � EINBETTEN Equation.2  ��� is given by the previous relation.


b) Second method


The partial fraction expansion of � EINBETTEN Equation.2  ��� can be written also in the form:


� EINBETTEN Equation.2  ��� ,


where � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���.


The corresponding time response according to Equation (1.68) and Equation (1.77) will be:


� EINBETTEN Equation.2  ���.


The coefficient � EINBETTEN Equation.2  ��� is obtained similar to the previous method. So:


� EINBETTEN Equation.2  ���.


To determine the coefficients � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���, first we have to compute:


� EINBETTEN Equation.2  ���


Then,


� EINBETTEN Equation.2  ��� .


� EINBETTEN Equation.2  ��� .


So, the time function is:


� EINBETTEN Equation.2  ���


that is similar to that already obtained when using the same notation with � EINBETTEN Equation.2  ���.


b) � EINBETTEN Equation.2  ��� has multiple complex zeros


Consider for simplicity that the complex zero pair � EINBETTEN Equation.2  ��� has a multiplicity of second order. The corresponding factors in the partial fractions expansion are of form:


� EINBETTEN Equation.2  ��� ,	(1.80)


where notations similar to Equation (1.75) were used.


Since we can write � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���, we can use the same decomposition as in Equation (1.76). This yields:


� EINBETTEN Equation.2  ���	(1.81)


Using Table 1.2. and the s-shifting theorem (1.50) one can obtain the inverse Laplace-transform for Equation (1.81) in the form:


� EINBETTEN Equation.2  ���	(1.82)


The constants from (1.82) are computed as follows. First determine:


� EINBETTEN Equation.2  ���	(1.83)


and


� EINBETTEN Equation.2  ���,	(1.84)


respectively.


Then compute the coefficients:


� EINBETTEN Equation.2  ���	(1.85)


where Re denotes the real part and Im the imaginary part.


As it appears, the calculus is much more complicated. Fortunately, in engineering practice one work with models that rarely present higher order then two for repeated complex zeros. However, if it happens, the exposed method can be extended anyway.


Illustrative example


Consider the linear model of a forced undamped vibrating system:


� EINBETTEN Equation.2  ���.


Find the corresponding � EINBETTEN Equation.2  ���� EINBETTEN Equation.2  ���, knowing that � EINBETTEN Equation.2  ���.


Solution:


This equation is the mathematical model of forced oscillations of a body of mass � EINBETTEN Equation.2  ��� attached at the lower end of an elastic spring whose upper end is fixed. In our notation � EINBETTEN Equation.2  ��� is the spring modulus and � EINBETTEN Equation.2  ��� is the driving force or input signal. Noting � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� we may write the given differential equation in the form:


� EINBETTEN Equation.2  ���.


Applying the Laplace transform, we obtain:


� EINBETTEN Equation.2  ��� ,


from where it is easy to obtain:


� EINBETTEN Equation.2  ��� ,


or


� EINBETTEN Equation.2  ��� .


a) First method


No resonance. If � EINBETTEN Equation.2  ���, we are in the case of simple complex zeros. So, the partial fractions expansion leads to:


� EINBETTEN Equation.2  ��� .


We determine first the zeros. They are: � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���, and of course their complex conjugates � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���, respectively. Observe that all zeros have only imaginary parts.


For the first partial fractions coefficients we compute:


� EINBETTEN Equation.2  ���


Since � EINBETTEN Equation.2  ��� is real, the coefficients are:


� EINBETTEN Equation.2  ��� ,


� EINBETTEN Equation.2  ��� ,


and the corresponding inverse will be:


� EINBETTEN Equation.2  ��� .


For the second partial fractions coefficients we compute:


� EINBETTEN Equation.2  ���


Since � EINBETTEN Equation.2  ��� is also real, the coefficients from (1.77) are:


� EINBETTEN Equation.2  ��� ,


� EINBETTEN Equation.2  ��� ,


and the corresponding inverse will be:


� EINBETTEN Equation.2  ��� .


By adding the two inverses we obtain the desired solution:


� EINBETTEN Equation.2  ��� .


Resonance. If � EINBETTEN Equation.2  ���, then the Laplace transform and its partial fractions expansion can be written:


� EINBETTEN Equation.2  ��� .


In this case the denominator has the double roots : � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���, respectively, that means that � EINBETTEN Equation.2  ��� in our notations.


The denominator cancels out in Equation (1.83) and we simply have:


� EINBETTEN Equation.2  ��� .


This gives the coefficients from Equation (1.85) as follows:


� EINBETTEN Equation.2  ���


The solution yields by substituting in Equation (1.81):


� EINBETTEN Equation.2  ��� .


a) Second method


We will try now to obtain the solution by using the convolution theorem. For this we have to write:


� EINBETTEN Equation.2  ��� .


Since from Table 1.2. it is easy to find out:


� EINBETTEN Equation.2  ��� ,


� EINBETTEN Equation.2  ��� ,


applying the convolution integral, we get:


� EINBETTEN Equation.2  ���


The integrand equals to:


� EINBETTEN Equation.2  ���.


No resonance. If � EINBETTEN Equation.2  ���, we obtain by integration with respect to � EINBETTEN Equation.2  ���:


� EINBETTEN Equation.2  ���.


Forming the common denominator and simplifying, the same final result is obtained:


� EINBETTEN Equation.2  ��� .


The solution represents a superposition of two harmonic oscillations whose frequencies are the natural frequency of the freely vibrating system (� EINBETTEN Equation.2  ���) and the frequency of the driving force (� EINBETTEN Equation.2  ���).


Resonance. If � EINBETTEN Equation.2  ���, then the integrand is simply:


� EINBETTEN Equation.2  ���.


Integration with respect to � EINBETTEN Equation.2  ��� yields the same result:


� EINBETTEN Equation.2  ���.


That is, the amplitude of the oscillations will increase proportionally in time.
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