The sampled output signal will be:


� EINBETTEN Equation.2  ���.	(1.178)


Applying the Laplace transform to Equation (1.178) yields:


� EINBETTEN Equation.2  ���.	(1.179)


Substituting � EINBETTEN Equation.2  ��� (thus also � EINBETTEN Equation.2  ���) results:


� EINBETTEN Equation.2  ���	(1.180)


considering that � EINBETTEN Equation.2  ���. Hence the Laplace transform � EINBETTEN Equation.2  ��� of the sampled input signal appears separately. According to Equation (1.60) (case of continuous models with zero initial conditions) the pulse transfer function or discrete transfer function is defined as follows:


� EINBETTEN Equation.2  ���.	(1.181)


Introducing the z transforms’ variable � EINBETTEN Equation.2  ��� results the z transfer function:


� EINBETTEN Equation.2  ���.	(1.182)


Hence, the z transfer function is the relation between the z transform of the sampled output and the z transform of the sampled input and equals furthermore the z transform of the sampled weighting function. The conclusion is similar to that obtained in the case of the s transfer function defined for continuous systems. So, it is an analogy between description of continuous systems using the Laplace transform (using the s transfer function) and descriptions of discrete-time systems using the z transform (using the z transform function).


One may expect to have a direct procedure to obtain the z transfer function from the transfer function. Usually, the procedure is the following: from the given transfer function G(s) one gets the impulse response or the weighting function (a continuous time function), than samples it with constant period and finally obtains the z transfer function considering the z transform of the sampled weighting function. These operations can be illustrated as:


� EINBETTEN Equation.2  ���,	(1.183)


or we can simply write:


� EINBETTEN Equation.2  ���.	(1.184)


However, using simple terms from the Laplace transform table (ex. Table 1.2.) and from the  z transform table (ex. Table 1.3.) it follows that we can write directly:


� EINBETTEN Equation.2  ���,	(1.185)


thus the solution can be derived without calculating the weighting function.


If the sampler is followed by a (zero-order) hold as usually happens in computer controlled systems, the z transfer function that will describe the discrete-time mathematical model must include the hold element. In this case we can write:


� EINBETTEN Equation.2  ���,	(1.186)


where HG(z) represents the z transfer function of the time-discrete model that includes a hold element and H(s) means the transfer function of the hold.


Using Equation (1.112), for a zero-order hold this then yields:


� EINBETTEN Equation.2  ���	(1.187)


The algorithm of determining the z transfer function with zero order hold from the s transfer function G(s) is:


1. Determine the step response of the system using the transfer function G(s)


2. Determine the corresponding z transform of the sampled step response


3. Divide the result by the z transform of the sampled unitary step function.


Illustrative example


Given the transfer function of a first-order lag � EINBETTEN Equation.2  ���


1., find the corresponding z transform function a) without and b) with a zero-order hold.


2., determine the final values of the step responses of the discrete-time model in both cases.


Solution:


1.a) For the given transfer function from Table 1.2. one easily obtains the weighting function:


� EINBETTEN Equation.2  ���.


If we consider � EINBETTEN Equation.2  ��� from Table 1.3 we obtain the z transfer function without hold element:


� EINBETTEN Equation.2  ���, where � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���.


1.b) Using Equation (1.187), Table 1.2. and Table 1.3. the z transfer function with zero-order hold will be:


� EINBETTEN Equation.2  ���


where � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���. The zero-order hold introduces into the numerator a lag term (delay of one sampling period time) together with a second parameter (� EINBETTEN Equation.2  ���).


2. From Table 1.3 results: � EINBETTEN Equation.2  ���. Applying the final-value theorem yields:


a) � EINBETTEN Equation.2  ��� .


b) � EINBETTEN Equation.2  ��� .


A value equalling the continuous-time behaviour was obtained only if zero-order hold was connected.


If we use Equation (1.115) for the first-order hold, then yields:


� EINBETTEN Equation.2  ���	(1.188)


The z transfer function with first-order hold, however, is rarely used in modelling of discrete-time systems as generally it brings no advantages. Therefore, this hold will not be used and the z transfer function with zero-order hold will be noted consequently as HG(z).


Table 1.4. summarises some z transfer functions without and with zero-order hold. The table contains the transfer functions of the continuous-time models, too. Notice that it is a direct correspondence between the denominators of the two transfer functions; for each pole of transfer function in s domain corresponds a pole of z transfer function in z domain. This is not more valid for numerators where supplementary zeros could appear in the z domain. Notice also that there is no difference between the denominators of the z transfer functions G(z) and the corresponding z transfer functions with zero-order hold HG(z).


Description of discrete-time models by the z transform formalism


With the aid of the z transform and its theorems and making use of the transform tables the discrete-time mathematical models given by difference equations can be manipulated in easy algebraic forms. Given a discrete-time model by Equation (1. 140) application of the z transform and its properties yields the form:


� EINBETTEN Equation.2  ���	(1.189)


The corresponding z transfer function results as:


� EINBETTEN Equation.2  ��� .	(1.190)


If the difference equation is given with backward shifted terms as in Equation (1.141), application of the z transform and its properties yields:


� EINBETTEN Equation.2  ���	(1.191)


The z transfer function can be expressed in this case as:


� EINBETTEN Equation.2  ���	(1.192)


Notice that Equation (1.189) and Equation (1.191) gives the same transfer function (discrete-time model) if the conditions for application of the z transform are respected. The difference is that in the second case negative powers of the transform variable z are used.


Working with z transfer functions the causality principle (the realizability condition) of a discrete-time model can be easily verified. In case of Equation (1.191) the condition is:


� EINBETTEN Equation.2  ��� for � EINBETTEN Equation.2  ���.	(1.193)


In case of using the z transfer function given by Equation (1.193) the condition is:


� EINBETTEN Equation.2  ��� .	(1.194)





Table 1.4. z transfer functions without and with zero-order hold
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