State-space description of dynamic systems


An important alternative of describing a system with a mathematical model is the state-space description method. The state-space method is not limited only to linear, time-invariant systems. It can be applied either to nonlinear and to time-varying systems as well. It suits also to models of multivariable systems very well.


The method is often reffered to as a modern approach, however, in reality, the state-space equations are simply first-order differential or difference equations, which have been used for many years by mathematicians and engineers.


The state of a system refers to the past, present and future conditions of a system. The state can be described by a set of numbers, a set of graphical representations, a set of equations or a set of linguistic rules or something that is more abstract in nature.


From mathematical point of view it is more convenient to define a set of state variables and state equations to portray the state of that system in time. There are some basic ground rules regarding the definition of a state variable and of a state equation. Let us consider that the set of time variables � EMBED Equation.2  ��� is chosen to describe the dynamic behaviour of a system and let us define these variables as state variables of that system. Then these state variables must satisfy the following conditions:


1., At any initial time � EMBED Equation.2  ���, the state variables � EMBED Equation.2  ��� define the initial states of the system at the selected initial time.


2., Once the inputs of the considered system for � EMBED Equation.2  ��� and the initial states defined above are specified, the state variables should completely define the future time behaviour of that system.


Therefore, the state variables of a system are defined as a minimal set of variables, � EMBED Equation.2  ��� such that knowledge of these variables at any initial time � EMBED Equation.2  ���, plus information on the input excitation subsequently applied, are sufficient to determine the state of the system at any time � EMBED Equation.2  ���.


For continuos-time systems the state equations are first-order differential equations. They give the relationship between the state variables and the input(s) of a system.


For a system with p inputs, the state equations can be written generally as:


� EMBED Equation.2  ���	(1.234)


where � EMBED Equation.2  ��� are the n state variables, � EMBED Equation.2  ��� are the p input variables, � EMBED Equation.2  ��� denotes the ith state functional relationship and t is the time variable.


If the system has q outputs, the outputs are related to the state variables and the inputs through the output equations:


� EMBED Equation.2  ���	(1.235)


where � EMBED Equation.2  ��� are the q output variables, � EMBED Equation.2  ��� denotes the ith output functional relationship and t is the independent variable. For more generality the model can be considered non-linear as far as f and g were not defined as linear functionals and time-variant as the independent variable t (time) appears separately in the functionals f and g.


The state equations and the output equations together form the set of equations called dynamic equations (continuous-time state-space model) of the system.


One should not confuse the state variables with the outputs of the system. An output of a system is a variable that usually can be measured, but the state variables does not satisfy often this condition. The state variables are (physical or not) internal variables of a system. However, an output variable is defined as a function of the state variables.


Let us define the following vectors (noted with small bold letters):


� EMBED Equation.2  ���,	(1.236)


where � EMBED Equation.2  ��� is defined as the state vector,


� EMBED Equation.2  ���,	(1.237)


where � EMBED Equation.2  ��� is defined as the input vector, and


� EMBED Equation.2  ���,	(1.238)


where � EMBED Equation.2  ��� is defined as the output vector.


The state equations of Equation (1.234) can be written shortly as:


� EMBED Equation.2  ���	(1.239)


where f denotes an � EMBED Equation.2  ��� column matrix (function vector) that contains the functions � EMBED Equation.2  ��� as elements. The output equations of Equation (1.235) become:


� EMBED Equation.2  ���	(1.240)


where g denotes a � EMBED Equation.2  ��� function vector that contains functions � EMBED Equation.2  ��� as elements.


For discrete-time systems the state equations are first-order difference equations that give the relationship between the state variables and the input(s) of a system at a given time instant. For a system with p inputs, the state equations can be written as:


� EMBED Equation.2  ���,	(1.241)


where � EMBED Equation.2  ��� is a set of n numbers representing the state of the system at the time instant � EMBED Equation.2  ��� (kth sequence), � EMBED Equation.2  ��� represents the ith state variable value at the next time sequence, � EMBED Equation.2  ��� are the p input variables (set of p numbers) considered at the kth time instant and � EMBED Equation.2  ��� is the ith functional relationship considered at the same time sequence.


If the discrete-time system has q outputs, the outputs are related to the state variables and the inputs through the discrete-time output equations:


� EMBED Equation.2  ���	(1.242)


where � EMBED Equation.2  ��� are the q output variables considered at the kth time sequence and � EMBED Equation.2  ��� denotes the ith output functional relationship considered at the same time sequence k.


The state equations of Equation (1.241) and the output equations of Equation (1.242) together form the set of equations of the discrete-time state-space model of the system.


Similar to continuous-time models, one may obtain a condensed description by using matrices. Let us define the following column matrices (vectors):


� EMBED Equation.2  ���,	(1.243)


where � EMBED Equation.2  ��� is defined as the discrete-time state vector,


� EMBED Equation.2  ���,	(1.244)


where � EMBED Equation.2  ��� is defined as the discrete-time input vector, and


� EMBED Equation.2  ���,	(1.245)


where � EMBED Equation.2  ��� is defined as the discrete-time output vector.


The state equations of Equation (1.241) can be written shortly as:


� EMBED Equation.2  ���	(1.246)


where � EMBED Equation.2  ��� denotes an � EMBED Equation.2  ��� column matrix (discrete-time function vector) that contains the functions � EMBED Equation.2  ��� as elements. The output equations of Equation (1.242) become:


� EMBED Equation.2  ���	(1.247)


where � EMBED Equation.2  ��� denotes a � EMBED Equation.2  ��� column matrix (discrete-time function vector) that contains the functions � EMBED Equation.2  ��� as constituting elements.


So, if the state-space description method is used, the mathematical model of a continuous-time system appears in a condensed form:


� EMBED Equation.2  ���	(1.248)


while for the discrete-time systems the general model is expressed as:


� EMBED Equation.2  ���	(1.249)


Linear, continuous, time-invariant models


In case of time-invariant systems, the time, as independent variable, does not appear explicitely in the mathematical model. If the system is linear, it means, that the functions � EMBED Equation.2  ��� and � EMBED Equation.2  ��� are linear, multivariable functions and their expression is a linear combination of the state variables � EMBED Equation.2  ��� and of the input variables � EMBED Equation.2  ���. In this respect we have to conclude that the state variables are linearly independent and they can be considered as vectors that form a basis of the n-dimensional state-space.


For linear, time-invariant systems the state-space form mathematical model, that is the dynamic equations of Equation (1.248) can be written generally in matriceal form as:


� EMBED Equation.2  ���,	(1.250a)


� EMBED Equation.2  ���,	(1.250b)


where A is an � EMBED Equation.2  ��� matrix, known as principal matrix, system matrix or state matrix, B is an � EMBED Equation.2  ��� matrix, known as input matrix or control matrix, C is a � EMBED Equation.2  ��� matrix, known as the state-output matrix or shortly, output matrix and D is a � EMBED Equation.2  ��� matrix, denoted as input-output matrix. (In our notations matrices are noted with bold capital letters.)


For single input-single output (SISO) systems the state-space mathematical model given by Equation (1.250a) and Equation (1.250b) can be represented as:


� EMBED Equation.2  ���	(1.251)


where the matrices B and C have reduced their dimension to vectors b (� EMBED Equation.2  ���) and c (� EMBED Equation.2  ���) respectively, and the input-output matrix D has (eventually) a single element d. The dot signifies the time-differential and T the transpose operation. We will continue our approach mainly with the single input-single output model. Extension to multi input-multi output (MIMO) models of multivariable systems is to be obtained immediately.


Relationship between the state-space model and differential equation representation


There is a direct correspondence between the model description with differential equations and the state-space description given by Equation (1.251). It is well-known that an n-order linear differential equation can be always transformed into a system of n, first-order differential equations and the two mathematical descriptions are equivalent.


The general programming method


Consider the general nth-order linear differential equation with constant coefficients:


� EMBED Equation.2  ���	(1.252)


and define the state-variables in the following mode:


� EMBED Equation.2  ���	(1.253)


where we have noted


� EMBED Equation.2  ���	(1.254)


The state-space representation is obtained by using the model of Equation (1.252) and by re-writing Equation (1.253) into the following mode:


� EMBED Equation.2  ���	(1.255)


The first equation corresponds to the output equation while the next n equations represent the state equations. Respecting the notations from Equation (1.251) we obtain:


� EMBED Equation.2  ���	(1.256)


The above exposed method of obtaining the state-space representation is known as the general programming method. The transformation algorithm is very simple and easy to implement it in a computer.


Notice that the state-matrix A contains only the coefficients of the homogeneous differential equation. This illustrates that the internal representation (behaviour) of the considered system is included into the matrix A. The connections of the states with the input signal are represented by the input-state vector b and the relationship between the output signal and the state variables is given by the state-output vector c. The direct connection between the input and output signals is represented by the reduced to a single element input-output matrix d, however, in case of state-space models of most real systems (causal, inertial systems) it does not exist (� EMBED Equation.2  ���).


The direct programming method


Consider the general differential equation of Equation (1.252) rewrited with the use of the differential operator D:


� EMBED Equation.2  ���	(1.257)


If we note:


� EMBED Equation.2  ���,	(1.258)


Equation (1.258) can be rewrited as:


� EMBED Equation.2  ���	(1.259)


that is a similar to differential equation of Equation (1.252) but does not have derivates of the input signal. The variable � EMBED Equation.2  ��� is just a fictious notation for intermediar calculus.
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