1. Historical background of fuzzy logic 





The fuzzy set theory was first introduced by Lotfi Zadeh in 1965. In his seminal paper he based a new fuzzy set theorey on the ordinary or crisp set theory. The main interest of his paper was to analyse and describe complex systems. (as for example human system) At that time was the idea of multivalued logic not unknown, Jan Lukasiewicz the polnish mathematicians worked on multivalued logic at the begining of the 20-th century. 


The first ten years of the fuzzy theory development were not as fast as we though. There was no special interest in fuzzy because of the general opinion that fuzzy was just a new name for probability theory. Against this opinion the development of fuzzy logic was not broken Gougen introduced L-fuzzy sets in 1967, fuzzy extensions of  mathematical subjects were mentioned by Chang (1968). The relationship between many valued logic and fuzzy logic was examined by several authors that time. Approximate reasoning based on fuzzy set theory was investigated by Gougen (1968-69) and the most aspect were developed by Zadeh (1971,1972, 1975). 


The first  applications of fuzzy logic were made in the second part of the 70-ees?? Mamdani's steam engine (1975) showed the possibility of developement of fuzzy based controllers. On the basis of fuzzy controller theory several applications has been made for different industrial purposes such as heating exchange control (1977 Holmblad, Ostergaard), cement klin (1982 Ostergaard). Sogeno introduced his fuzzy controlled model car in 1985, Lakov his robot control application in 1985, and Nagashi, Nishizuka their traffic junction control in 1984. Risk analyses, decision making ,management have been researched by Yager, Hammerbacher, Sommer, bruce and Kandel. Applications in the field of collective decision making have been presented by Dimitrov (1983) at first.





�
2. Fuzzy Sets


2.1 Introduction


Sets are grouped elements of any universe of discourse. In the classical sense, sets in  any universe of  discourse are shared into two groups: members and nonmembers of the given universe. These type of  sets are the classical or crisp sets. A set can be characterised by its elements themselves: set B={1,3,5,6}�SYMBOL 206 \f "Symbol" \s 12��R or by its characteristic function �SYMBOL 106 \f "Symbol" \s 12��A= X�SYMBOL 174 \f "Symbol" \s 12�� [0,1], where �SYMBOL 106 \f "Symbol" \s 12��A(x)=1 if x belongs to the set A and �SYMBOL 106 \f "Symbol" \s 12��A(x)=0 if x does not belong to the set A. In many cases these type of sharp distinction is not the exact way to describe problems. For example the categories employed by humans, such as cool or warm water, hard work, tall people are classes, wich do not present a clear-cut differentiation between the elements belonging or not belonging to the set. For describing the vagueness of  such classes Zadeh suggested the replacement of the charasteristic function by the so called membership function. The membership function assignes to each element in the universe of discousre a value that represents its grade of membership to the given set. These type of sets are fuzzy sets.


2.2 Basic Definitions





Membership function is the generalised form of characteristic function of sets, wich assignes a membership value to each element of a universal set (X) so called membership grade. The higher the value is, the higher is the degree of membership.


Usual forms:





	�SYMBOL 109 \f "Symbol" \s 12��A: X�SYMBOL 174 \f "Symbol" \s 12��[0,1]	where X is the universal set, A is the fuzzy set





For example a fuzzy set of “middle aged mens” can be given by its membership function
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figure 1. generalised membership function





�
Usual membership grade function shapes:





a) Triangular shape
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figure 2.2





b) Trapezoidal shape
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figure 2.3





b) General shape
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figure 2.4





A fuzzy set is given by its elements and its membership function. Formally it can be defined: a fuzzy set A in a universe of discourse X={x}, A�SYMBOL 205 \f "Symbol" \s 12��X is defined





A=�SYMBOL 229 \f "Symbol" \s 12�� �SYMBOL 109 \f "Symbol" \s 12��i/xi,  xi�SYMBOL 206 \f "Symbol" \s 12��X	(2.1)


where �SYMBOL 109 \f "Symbol" \s 12��i is the membership grade of xi. If X is the set of real numbers,





A=�SYMBOL 242 \f "Symbol" \s 12��x�SYMBOL 109 \f "Symbol" \s 12��A(x)/x	(2.2)





Let us take a crisp universal set of  temperatures for further examples given as �SYMBOL 176 \f "Symbol"�C values:





	X={-10,-5,0,10,20,35,40,60,90,100}





For example a fuzzy set A can be given as follow:





	A=0.3/-10+0.5/-5+0.8/0+0.1/20+...+�SYMBOL 109 \f "Symbol" \s 12��(x)/x	where �SYMBOL 109 \f "Symbol" \s 12��(x) is the membership grade of x





Let us define three fuzzy sets labeled cold, comfortable, and hot temperature:





cold={1/-10,0.7/-5,0.5/0,0.1/10)�comfortable={0.3/10,1/20,0.6/35,0.2/40}�hot={0.1/40,0.5/60,0.8/90,0.9/100}�





The support of a fuzzy set A (defined on X universal set) is the crisp set that contains all elements of X that have nonzero membership grade in A. 


�supp A={x�SYMBOL 206 \f "Symbol" \s 12��X: �SYMBOL 109 \f "Symbol" \s 12��A(x)>0}


For example the support of the set cold is:


supp (cold)={-10,-5,0,10}





A fuzzy set is empty if it has no element with nonzero membership grade, if it has an empty support.





The core of a fuzzy set �SYMBOL 109 \f "Symbol" \s 12��A(x)= X�SYMBOL 174 \f "Symbol" \s 12��[0,1] is a crisp subset of X, wich contains each elements with membership grade one. 





core(A)={x�SYMBOL 189 \f "Symbol"��SYMBOL 109 \f "Symbol"�A(x)=1 and x�SYMBOL 206 \f "Symbol" \s 12��X}	(2.3)





The height of a fuzzy set is the largest membership grade in the whole set. If these value is the same as the maximum possible membership grade then the fuzzy set is called normalised. If  ��SYMBOL 109 \f "Symbol" \s 12��A(x)= X�SYMBOL 174 \f "Symbol" \s 12��[0,1] and height(A)=1 then A normalised. In our examples the fuzzy sets cold and confortable are normalised, the fuzzy set hot is not normalised.





The definition of �SYMBOL 97 \f "Symbol" \s 12��-cut is similar to the definition of the support of fuzzy sets:





A�SYMBOL 97 \f "Symbol" \s 12�� ={x�SYMBOL 206 \f "Symbol" \s 12��X: �SYMBOL 109 \f "Symbol" \s 12��A(x)�SYMBOL 179 \f "Symbol" \s 12���SYMBOL 97 \f "Symbol" \s 12��}	(2.4)





For example for �SYMBOL 97 \f "Symbol" \s 12��=0.5 the �SYMBOL 97 \f "Symbol" \s 12��-cut of the fuzzy set hot is:





hot0.5={60,90,100}


A=B





Two fuzzy sets A and B defined on X universe of discourse are equal if and only if for each x�SYMBOL 206 \f "Symbol" \s 12��X,  �SYMBOL 109 \f "Symbol" \s 12��A(x)=�SYMBOL 109 \f "Symbol" \s 12��B(x)





A�SYMBOL 205 \f "Symbol" \s 12��B





A is a fuzzy subset in B ( A is contained in B) if and only if for each x�SYMBOL 206 \f "Symbol" \s 12��X,  �SYMBOL 109 \f "Symbol" \s 12��A(x)�SYMBOL 163 \f "Symbol" \s 12���SYMBOL 109 \f "Symbol" \s 12��B(x)





A fuzzy number is defined on R and it is a convex and normalised fuzzy set.
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figure 2.5





2.3 Set operations introduced by Zadeh





If  the range of all membership grades is the closed interval between 0 and 1 then the complement of the fuzzy set A is defined as:





�EMBED Equation ��� for each x�SYMBOL 206 \f "Symbol" \s 12��X	(2.5)





For example the complement of the fuzzy set hot is given:





not hot={0.9/40,0.5/60,0.2/90,0.1/100}
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figure 2.6





The intersection of  fuzzy sets A and B is defined by the membership function �SYMBOL 109 \f "Symbol" \s 12��A�SYMBOL 199 \f "Symbol" \s 12��B(x):





�SYMBOL 109 \f "Symbol" \s 12��A�SYMBOL 199 \f "Symbol" \s 12��B(x)=min [�SYMBOL 109 \f "Symbol" \s 12��A(x), �SYMBOL 109 \f "Symbol" \s 12��B(x)] for each x�SYMBOL 206 \f "Symbol" \s 12��X	(2.6)





The fuzzy set A�SYMBOL 199 \f "Symbol" \s 12��B is a subset of both fuzzy sets A and B. For example the intersection of fuzzy sets cold and comfortable creates the following fuzzy set:





cold�SYMBOL 199 \f "Symbol" \s 12�� confortable ={0.1/10)





The union of  fuzzy sets A and B is defined by the membership function �SYMBOL 109 \f "Symbol" \s 12��A�SYMBOL 200 \f "Symbol" \s 12��B(x):





�SYMBOL 109 \f "Symbol" \s 12��A�SYMBOL 200 \f "Symbol" \s 12��B(x)=max [�SYMBOL 109 \f "Symbol" \s 12��A(x), �SYMBOL 109 \f "Symbol" \s 12��B(x)] for each x�SYMBOL 206 \f "Symbol" \s 12��X	(2.7)





The fuzzy sets A and B are subsets of the fuzzy set A�SYMBOL 200 \f "Symbol" \s 12��B. For example the union of the fuzzy sets cold and comfortable creates the following fuzzy set:





cold�SYMBOL 200 \f "Symbol" \s 12�� confortable ={1/-10,0.7/-5,0.5/0,0.3/10,1/20,0.6/35,0.2/40)





Graphically the two operations are shown in the Fig. 2.7
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figure 2.7 Intersection and union of fuzzy sets





The extention principle was introduced by Zadeh in 1975 and is one of the most important tools in fuzzy sets theory. The principle addresses the problem: how can be generalised the mapping by any f function in the crisp set X to the crisp set Y for mapping fuzzy subsets of X to Y. Let us take a fuzzy set A defined on the universe of discourse X and a function f that mappes points in the set X to the points in set Y. 





A= �SYMBOL 109 \f "Symbol" \s 12��1/x1+�SYMBOL 109 \f "Symbol" \s 12��2/x2+...+�SYMBOL 109 \f "Symbol" \s 12��n/xn





f(A)=f(�SYMBOL 109 \f "Symbol" \s 12��1/x1+�SYMBOL 109 \f "Symbol" \s 12��2/x2+...+�SYMBOL 109 \f "Symbol" \s 12��n/xn)= �SYMBOL 109 \f "Symbol" \s 12��1/f(x1)+�SYMBOL 109 \f "Symbol" \s 12��2/f(x2)+...+�SYMBOL 109 \f "Symbol" \s 12��n/f(xn)





For the cartesian product X=X1xX2x...Xn, where A1, A2,...An are fuzzy sets defined in X1,X2,...,Xn  and a crisp function f: X1xX2x...Xn�SYMBOL 174 \f "Symbol" \s 12��Y, y=f(x1,x2,...xn), y�SYMBOL 206 \f "Symbol" \s 12��Y the image set B in set Y of  A1,A2,...,An is defined by the membership function:





�SYMBOL 109 \f "Symbol" \s 12��B(y)=max{x1..xn}�SYMBOL 206 \f "Symbol" \s 12��A1..An[mini=1..n �SYMBOL 109 \f "Symbol" \s 12��Ai(xi)]  for each y�SYMBOL 206 \f "Symbol" \s 12��Y, and y=f(x1,x2,...,xn)





2.4. Operations on fuzzy sets 





In case of crisp set operations there are some axiomatic properties that are satisfied by all operations, let us take the crisp universal set X, and crisp sets A,B,C�SYMBOL 204 \f "Symbol" \s 12��X :





Boundary conditions:





A�SYMBOL 200 \f "Symbol" \s 12��X=X,   A�SYMBOL 199 \f "Symbol" \s 12��X=A


A�SYMBOL 200 \f "Symbol" \s 12���SYMBOL 198 \f "Symbol" \s 12��=A,   A�SYMBOL 199 \f "Symbol" \s 12���SYMBOL 198 \f "Symbol" \s 12��=�SYMBOL 198 \f "Symbol" \s 12��


for complement: � EMBED Equation.2  ���  � EMBED Equation.2  ���





commutativity:





A�SYMBOL 199 \f "Symbol" \s 12��B=B�SYMBOL 199 \f "Symbol" \s 12��A, A�SYMBOL 200 \f "Symbol" \s 12��B=B�SYMBOL 200 \f "Symbol" \s 12��A





associativity:





A�SYMBOL 199 \f "Symbol" \s 12��(B�SYMBOL 199 \f "Symbol" \s 12��C)= (A�SYMBOL 199 \f "Symbol" \s 12��B)�SYMBOL 199 \f "Symbol" \s 12��C,    A�SYMBOL 200 \f "Symbol" \s 12��(B�SYMBOL 200 \f "Symbol" \s 12��C)= (A�SYMBOL 200 \f "Symbol" \s 12��B)�SYMBOL 200 \f "Symbol" \s 12��C





These conditions also have  a plausible interpretation in interpreting a grade of membership as a grade of truth of any proposition. The boundary conditions indicate that the logical connectivities  for fuzzy sets coincide with those applied in two-valued logic. The property of commutativity reflects a case in wich the truth value of a composite expression does not depend on the order of the components used in its formation.


If we accept all the above conditions, a wide variety of  model classes can be defined for logical connectivities (union, intersection). These classes are called triangular norms (t-norms and co-(or s-)norms), wich generalise the intersection and union operations. A particularly interesting and active domain within the field of fuzzy set theory is the problem of specifying the union and the intersection of fuzzy subsets. In trying to select the apptopriate fuzzy union-intersection operations for use in a given situation, consideration should be given to a number of  criteria to help in this selection. In selecting the form of these operators, primary consideration must be given to the domain in wich we are using the fuzzy structure as a mathematical model. In addition , the desire to capture particular formal properties is at time a consideration. In practical case for example by a fuzzy controller the most used operators are the above shown MAX, MIN operators because of their low requriments of counting time. But for other applications as for example decision analyses where the operation time is not important, other operators can bring a better solution. Not just the norms have to satisfy any conditions but the complement as a function too.





2.5 Operations and their axiomatic propreties





2.5.1 Fuzzy complement





The complement of a fuzzy set A can be defined as a function f:[0,1]�SYMBOL 174 \f "Symbol" \s 12��[0,1]. These function must satisfy some requirements to be a fuzzy complement.According to the above conditions:





Axiom 1. boundary conditions: f(0)=1 and f(1)=0, as we have seen by the crisp complement





Axiom 2. monotonic nonincreasing: for any �SYMBOL 109 \f "Symbol" \s 12��(x1),�SYMBOL 109 \f "Symbol" \s 12��(x2) �SYMBOL 206 \f "Symbol" \s 12��[0,1], where�SYMBOL 109 \f "Symbol" \s 12��(x1)<�SYMBOL 109 \f "Symbol" \s 12��(x2), f(�SYMBOL 109 \f "Symbol" \s 12��(x1))�SYMBOL 179 \f "Symbol" \s 12��f(�SYMBOL 109 \f "Symbol" \s 12��(x2)), where x1, x2 �SYMBOL 206 \f "Symbol" \s 12�� A fuzzy set





Axiom1 and 2 are conditions for the functions that are the  most general class of  fuzzy complements. Axiom 1 is necessary to satisfy the crisp boundary conditions as well. Axiom 2 is essential because we expect that the increase in the degree of membership in a fuzzy set cause a decrease in the degree of membership of  its complements. 


There are another from the practical wiev important and desirable requiurements for fuzzy complements:





Axiom 3. f is a continuous function





Axiom 4. f is involutive , wich states f(f(�SYMBOL 109 \f "Symbol" \s 12��(x))= �SYMBOL 109 \f "Symbol" \s 12��(x) for each �SYMBOL 109 \f "Symbol" \s 12��(x)�SYMBOL 206 \f "Symbol" \s 12��[0,1]





The last two axioms are stronger, and build a subclass of fuzzy complements. If any function is involutive, it implies its continuity. 
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2.8 general complement function � EMBED Equation.2  ���


There are many types of  involutive fuzzy complements:





a)�EMBED Equation ��� the standard complements operation





b) The Sugeno class of involutive fuzzy complements is defined by the function:





�EMBED Equation ���	(2.8)





where �SYMBOL 108 \f "Symbol" \s 12���SYMBOL 206 \f "Symbol" \s 12��(-1,�SYMBOL 165 \f "Symbol" \s 12��). Each �SYMBOL 108 \f "Symbol" \s 12�� value represents an involutive fuzzy complement function. For �SYMBOL 108 \f "Symbol" \s 12��=0 it becomes the crisp complement function.
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figure 2.9 The Sugeno-class of complement functions


 


c) The Yager class of involutive fuzzy complements is defined 





�EMBED Equation ���	(2.9)





where w�SYMBOL 206 \f "Symbol" \s 12��(0,�SYMBOL 165 \f "Symbol" \s 12��). Each w value represents an involutive fuzzy complement function. For w=1` it becomes the crisp complement function.
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figure 2.10 The Yager-class of complement functions





Equlibrium is the value of membership degree of a fuzzy set that has the same value of complement. f(�SYMBOL 109 \f "Symbol" \s 12��(x))= �SYMBOL 109 \f "Symbol" \s 12��(x). There are some rules without proof:





a) each fuzzy complement has at most one equlibrium


b) if the equlibrium of any fuzzy complement is e then 





�SYMBOL 109 \f "Symbol" \s 12��(x)�SYMBOL 163 \f "Symbol" \s 12��f(�SYMBOL 109 \f "Symbol" \s 12��(x)) if and only if �SYMBOL 109 \f "Symbol" \s 12��(x)�SYMBOL 163 \f "Symbol" \s 12��e and �SYMBOL 109 \f "Symbol" \s 12��(x)�SYMBOL 179 \f "Symbol" \s 12��f(�SYMBOL 109 \f "Symbol" \s 12��(x)) if and only if �SYMBOL 109 \f "Symbol" \s 12��(x)�SYMBOL 179 \f "Symbol" \s 12��e





c) if f continuous then it has a unique equlibrium





The dual point of a fuzzy complementer function is the point d for �SYMBOL 109 \f "Symbol" \s 12��(x) represented by a real number in [0,1] and defined by:





f(d)-d=�SYMBOL 109 \f "Symbol" \s 12��(x)-f(�SYMBOL 109 \f "Symbol" \s 12��(x))			(2.10)





where f is the complement function. If  f has an equlibrium, then d=e for it.





�
2.5.2 Fuzzy intersection, t-norm operator





An operator T :





T:[0,1]x[[0,1]�SYMBOL 174 \f "Symbol" \s 12��[0,1]


is called t-norm.


The fuzzy intersection between A, B fuzzy sets have the following requirements and axioms:





Axiom 1. boundary conditions: T(1,1)=1, T(0,1)=T(1,0)=T(0,0)=0





Axiom2. commutativity T(�SYMBOL 109 \f "Symbol" \s 12��(x1), �SYMBOL 109 \f "Symbol" \s 12��(x2))= T(�SYMBOL 109 \f "Symbol" \s 12��(x2), �SYMBOL 109 \f "Symbol" \s 12��(x1))





Axiom 3. monotonic  if �SYMBOL 109 \f "Symbol" \s 12��(x1)<�SYMBOL 109 \f "Symbol" \s 12��(x2) and �SYMBOL 109 \f "Symbol" \s 12��(x3)<�SYMBOL 109 \f "Symbol" \s 12��(x4) then T(�SYMBOL 109 \f "Symbol" \s 12��(x1),�SYMBOL 109 \f "Symbol" \s 12��(x3))< T(�SYMBOL 109 \f "Symbol" \s 12��(x1),�SYMBOL 109 \f "Symbol" \s 12��(x3))





Axiom 4. associative T(T(�SYMBOL 109 \f "Symbol" \s 12��(x1),�SYMBOL 109 \f "Symbol" \s 12��(x2)),�SYMBOL 109 \f "Symbol" \s 12��(x3))=T(�SYMBOL 109 \f "Symbol" \s 12��(x1),T(�SYMBOL 109 \f "Symbol" \s 12��(x2),�SYMBOL 109 \f "Symbol" \s 12��(x3)))





There can be other requirements for union:





Axiom 5. T is continuous





Axiom 6 T is idempotent; T(�SYMBOL 109 \f "Symbol" \s 12��(x), �SYMBOL 109 \f "Symbol" \s 12��(x))= �SYMBOL 109 \f "Symbol" \s 12��(x)





A fuzzy t-norm has zero divisors if  there exist x,y>0 such that T(x,y)=0. A t-norm is Archimedean if T(x,x)>x for every x((0,1).


2.5.3 Fuzzy union, t-conorm operator





S:[0,1]x[[0,1]�SYMBOL 174 \f "Symbol" \s 12��[0,1]


is called t-conorm.


The fuzzy union between A, B fuzzy sets have the following requirements and axioms:





Axiom 1. boundary conditions: S(0,0)=0, S(0,1)=S(1,0)=S(1,1)=1





Axiom2. commutativity S(�SYMBOL 109 \f "Symbol" \s 12��(x1), �SYMBOL 109 \f "Symbol" \s 12��(x2))= S(�SYMBOL 109 \f "Symbol" \s 12��(x2), �SYMBOL 109 \f "Symbol" \s 12��(x1))





Axiom 3. monotonic  if �SYMBOL 109 \f "Symbol" \s 12��(x1)<�SYMBOL 109 \f "Symbol" \s 12��(x2) and �SYMBOL 109 \f "Symbol" \s 12��(x3)<�SYMBOL 109 \f "Symbol" \s 12��(x4) then S(�SYMBOL 109 \f "Symbol" \s 12��(x1),�SYMBOL 109 \f "Symbol" \s 12��(x3))< S(�SYMBOL 109 \f "Symbol" \s 12��(x1),�SYMBOL 109 \f "Symbol" \s 12��(x3))





Axiom 4. associative S(S(�SYMBOL 109 \f "Symbol" \s 12��(x1),�SYMBOL 109 \f "Symbol" \s 12��(x2)),�SYMBOL 109 \f "Symbol" \s 12��(x3))=S(�SYMBOL 109 \f "Symbol" \s 12��(x1),S(�SYMBOL 109 \f "Symbol" \s 12��(x2),�SYMBOL 109 \f "Symbol" \s 12��(x3)))





There can be other requirements for union:





Axiom 5. S is continuous





Axiom 6 S is idempotent; S(�SYMBOL 109 \f "Symbol" \s 12��(x), �SYMBOL 109 \f "Symbol" \s 12��(x))= �SYMBOL 109 \f "Symbol" \s 12��(x)





In general, the choice of intersection operation is not completely indepndent of the choice of union operation. This connection becomes manifest with the complement operation. The above introduction of the complement operation allows us to provide a general De Morgan’s law relating t-norm and co-norms. Assume T is any arbitrary t-norm operator, then an operator S  defined by 





�EMBED Equation ���





can be shown to be a t-conorm. More specifically, for given T operator, the corresponding S operator defined as in the above is called its dual. It can be shown that if S is a t-conorm, then �EMBED Equation ��� is a t-norm. As important implication of this that if we define the union and intersection operations so that they satisfy the De Morgan’s law:





�EMBED Equation ���





and





�EMBED Equation ���





The following short table shows some commonly encountered t-norm and co-norm duals:





t-norm	t-conorm	called:





Min(a,b)	Max(a,b)	Min/Max


ab	a+b-ab	Product Sum


Max(0,a+b-1)	Min(1,a+b)	Bounded Sum





Some of the class that satisfy the above axioms 1..4 are shown in the table:





�






Union�
Intersection�
Range�
Author�
�
�EMBED Equation ����
�EMBED Equation ����
�EMBED Equation ����
Schweizer & Sklar�
�
�EMBED Equation ����
�EMBED Equation ����
�EMBED Equation ����
Hamacher�
�
�EMBED Equation ����
�EMBED Equation ����
�EMBED Equation ����
Frank�
�
�EMBED Equation ����
�EMBED Equation ����
�EMBED Equation ����
Yager�
�
�EMBED Equation ����
�EMBED Equation ����
�EMBED Equation ����
Dubois & Prade�
�
�EMBED Equation ����
�EMBED Equation ����
�EMBED Equation ����
Dombi�
�



Table 2.1


�
2.5.4 Aggregation operators





generaly the aggregation operators are operators, wich combine several fuzzy sets to produce one fuzzy set. A mapping:





G:[0,1]�SYMBOL 174 \f "Symbol" \s 12��[0,1]





for some n�SYMBOL 179 \f "Symbol" \s 12��2 is called an aggregation operator, when it satisfy the following requirements





Axiom 1. boundary conditions G(0,0,....,0)=0 and G(1,1,...,1)=1





Axiom 2. monotonic nondecreasing G(a1,a2,...,an)�SYMBOL 179 \f "Symbol" \s 12��G(b1,b2,...,bn) if ai�SYMBOL 179 \f "Symbol" \s 12��bi for all i.





Two additional axioms are usually employed, but they are not essential:





Axiom 3. G is continuous





Axiom 4. G is a symmetric function in all its arguments: G(ai�SYMBOL 250 \f "Symbol" \s 12��i�SYMBOL 206 \f "Symbol" \s 12��N)=G(ap(i))�SYMBOL 247 \f "Symbol" \s 12�� i�SYMBOL 206 \f "Symbol" \s 12��N)





In the certain case the t-norms and t-conorms are aggregation operators. They were defined only for two variables but axiom 4 let us generalise them for more than two variables as well. 


Averaging operators are that operators for wich:





min(a1,a2,...,an)�SYMBOL 163 \f "Symbol" \s 12��G(a1,a2,...an)�SYMBOL 163 \f "Symbol" \s 12�� max(a1,a2,...an)





The averaging operator always lies between the Max and Min of the arguments. If a*=maxi(ai),  then because of the monotonicity:





G(a1,a2,...,an)�SYMBOL 163 \f "Symbol" \s 12�� max(a*,a*,...a*)





and since ai�SYMBOL 163 \f "Symbol" \s 12��a*. However, since from the idempotency G(a*,a*,...,a*)=a*, it follows that:





G(a1,a2,...an)�SYMBOL 163 \f "Symbol" \s 12��a*





Similarly it can be proofed for the min operator.





There are some operators that satisfy the axioms:





The generalised mean operator that cover the whole inteval between min and max operations:


�EMBED Equation ���		(2.11)





For fixed parameters we obtain the following aggregations operators. For �SYMBOL 97 \f "Symbol" \s 12���SYMBOL 174 \f "Symbol" \s 12���SYMBOL 165 \f "Symbol" \s 12��  this operator approaches the Max operator, G�SYMBOL 165 \f "Symbol" \s 12��=(a1,a2,...,an)=max(a1,a2,...an) For �SYMBOL 97 \f "Symbol" \s 12���SYMBOL 174 \f "Symbol" \s 12��-�SYMBOL 165 \f "Symbol" \s 12��  this operator approaches the Min operator, G-�SYMBOL 165 \f "Symbol" \s 12��=(a1,a2,...,an)=min(a1,a2,...an)





1. for �SYMBOL 97 \f "Symbol" \s 12���SYMBOL 174 \f "Symbol" \s 12��0 we obtain the geometric mean:


�EMBED Equation ���			(2.12)





2. for �SYMBOL 97 \f "Symbol" \s 12��=1 we obtain the aritmetic  mean:


�EMBED Equation ���		(2.13)





3. for �SYMBOL 97 \f "Symbol" \s 12��= -1 we obtain the harmonic mean:


�EMBED Equation ���		(2.14)





Yager introduced a family of mean-like operators called the ordered weighted averaging operators. (OWA) The OWA operator of dimension is a mapping f:Rn  �SYMBOL 174 \f "Symbol" \s 12��R that has an associated n vector W


�EMBED Equation ���





such that 


1.�EMBED Equation ���


2.�EMBED Equation ���


where �EMBED Equation ��� the �EMBED Equation ��� largest of the �EMBED Equation ���. Since we shall view the OWA weights as a column vector we shall find it convenient to refer to the weights with the low indicies as weights at the top and those with the higher indicies with weights at the bottom. A fundamental aspect of this operation is the reordering step, in particular , an argument ai is not associated with particular weight wi but rather a weight is associated with particular ordered position of aggrehate. This ordering step introduces a nonlinearity into the aggregation process. 


For example:


Assume:


�EMBED Equation ���





Let us take the aggregation f(0.8,0.1,1,0.2). In this case through reordering process we get b1=1, b2=0.8, b3=0.2, b4=0.1 Then performing the aggregation �EMBED Equation ��� we get:


f(0.8,0.1,1,0.2)=(0.4)(1)+(0.3)(0.8)+(0.2)(0.2)+(0.1)(0.1)=0.69





Different OWA operators are distinguished by their weighting vector W. The most important cases are:





1.


�EMBED Equation ��� , in this case the aggregation �EMBED Equation ���





2.


�EMBED Equation ��� , in this case the aggregation �EMBED Equation ���





3.


�EMBED Equation ��� , in this case the aggregation �EMBED Equation ���





A generalised form of OWA operators is:





�EMBED Equation ���





The full scope of fuzzy aggregation operations are shown in the figure. All union and intersection operators are included and between them the generalised means. 
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�
3. Implikation and IF-THEN rules in fuzzy logic





3.1 Crisp implication 





Logic is the study of the methods of reasoning in all its possible forms. Classical logic deals with propositions that are required to be either true or false. Each proposition has an opposite, this is the negation of the proposition. The combinations of logic variables and their studies are involved in propositional logic. One of the main concerns of propositional logic is the study of rules by wich new logic variables can be produced as a function of other logic variables. A logic function assigns a truth value to a new variable for each combinations of truth values of the original variables. For n logic variables �EMBED Equation ���logic functions can be defined. For two input variables a and b the following functions �SYMBOL 106 \f "Symbol"�1..�SYMBOL 106 \f "Symbol"�16 are given:





a�
b�
�SYMBOL 106 \f "Symbol"�1�
�SYMBOL 106 \f "Symbol"�2�
�SYMBOL 106 \f "Symbol"�3�
�SYMBOL 106 \f "Symbol"�4�
�SYMBOL 106 \f "Symbol"�5�
�SYMBOL 106 \f "Symbol"�6�
�SYMBOL 106 \f "Symbol"�7�
�SYMBOL 106 \f "Symbol"�8�
�SYMBOL 106 \f "Symbol"�9�
�SYMBOL 106 \f "Symbol"�10�
�SYMBOL 106 \f "Symbol"�11�
�SYMBOL 106 \f "Symbol"�12�
�SYMBOL 106 \f "Symbol"�13�
�SYMBOL 106 \f "Symbol"�14�
�SYMBOL 106 \f "Symbol"�15�
�SYMBOL 106 \f "Symbol"�16�
�
0�
0�
0�
1�
0�
1�
0�
1�
0�
1�
0�
1�
0�
1�
0�
1�
0�
1�
�
0�
1�
0�
0�
1�
1�
0�
0�
1�
1�
0�
0�
1�
1�
0�
0�
1�
1�
�
1�
0�
0�
0�
0�
0�
1�
1�
1�
1�
0�
0�
0�
0�
1�
1�
1�
1�
�
1�
1�
0�
0�
0�
0�
0�
0�
0�
0�
1�
1�
1�
1�
1�
1�
1�
1�
�



Table 3.1





These simple functions are logic promitives. Any set of these logic primitives is called complete if all other logic primitives can be composed by a finite number of these primitives. The most used complete sets called logic formulas are negation, conjunction and disjunction.


The sense of Implikation is a hardly understoodable concept of logic. It was studied by greek philosophians already, and recognised as hard. The implication is a twovalued logic function and its  liguistic description is 





if A, then  B





where A and B are logic statements and if A then B is the implication operation. Let us define the truth value function of any statement: val (),for this function 


val(A), val(B)�SYMBOL 206 \f "Symbol"� (0,1) 


How can we assign a logic function to the implication operation? 





val (if A then B)=�SYMBOL 106 \f "Symbol"�[val(A),val(B)]





For example for conjunction we have �SYMBOL 106 \f "Symbol"�15





a�
b�
or(a,b)�
�
0�
0�
0�
�
0�
1�
1�
�
1�
0�
1�
�
1�
1�
1�
�
for disjunction �SYMBOL 106 \f "Symbol"�9:





a�
b�
and(a,b)�
�
0�
0�
0�
�
0�
1�
0�
�
1�
0�
0�
�
1�
1�
1�
�



for negation:





a�
non(a)�
�
0�
1�
�
1�
0�
�



for implication is usual selected �SYMBOL 106 \f "Symbol"�11:





a�
b�
imp(a,b)�
�
0�
0�
1�
�
0�
1�
1�
�
1�
0�
0�
�
1�
1�
1�
�



We give a simple proof  for this selection:





Consider two students make an appointment:





If the weather is good then we will play soccer





similar to the above description, where the statements:





 A="weather is good", B="we play soccer"





the implication is:if A then B





The question is in which case is 


1. true 	val (if A then B)=1


2. false	val (if A then B)=0 ?





The common sense gives us the Answer false is the implication in only one case if against the good weather they do not play soccer. val(A)=1 and val(B)=0. The implication is in the other three cases true:





1. The weather is good and they play soccer:


val(A)=1 and val(B)=1


2. The weather is not good and they do not play soccer:


val(A)=0 and val(B)=0


3. The weather is not good and they play soccer


val(A)=0 and val(B)=1





The discussion results exactly the above selected function �SYMBOL 106 \f "Symbol"�11





a�
b�
imp(a,b)�
�
0�
0�
1�
�
0�
1�
1�
�
1�
0�
0�
�
1�
1�
1�
�



3.2 A functional interpretation of IF..THEN rules in multivalued case





Consider a black box that realises the function f(x)=3x2 i


It can have a graphical or lingual description as well: 
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if INPUT=X then OUTPUT=3x2  





This rule describe the function of the blackbox exactly.


There is an other situation wether we know just a partial description of a black box. This partial knowledge can be interpreted by more than one rules for example:





if X=1 then y=3


if X=3 then y=27


if X=10 then y=300


if X=1/2 then y=3/4





3.3 Axioms for implications





The axioms for implications are similar to the axioms for t-norms, s-norms and aggregations. There are fundamental axioms that should be satisfied by each implication functions. These fundamental axioms are the axom 1.-axiom 4. there are optional axioms that specialise the implications. These are axiom 5.-axiom 9.





Consider i the implication function:





i:[0,1]x[0,1]�SYMBOL 174 \f "Symbol"�[0,1]





Axiom 1. for each x�SYMBOL 206 \f "Symbol"�[0,1]:


i(0,x)=1


i(1,x)=x


i(x,1)=1





Axiom 2. the implication function is in his first argument comonoton, and in his second argument monoton formally:





for each x,y,z �SYMBOL 206 \f "Symbol"�[0,1]





if x�SYMBOL 163 \f "Symbol"�y then i(x,z)�SYMBOL 179 \f "Symbol"�i(y,z) and i(z,x)�SYMBOL 163 \f "Symbol"�i(z,y)





Axiom 3. the function i satisfy the rule of kontraposition:





for each x,y �SYMBOL 206 \f "Symbol"�[0,1]





 i(x,y)=i(i(y,0), i(x,0))





Axiom 4.  the function i staisfy the rule of premissechange:





for each x,y,z �SYMBOL 206 \f "Symbol"�[0,1]





i(x,i(y,z))=i(y,i(x,z))





Axiom 5. Selfimplication:





for each x �SYMBOL 206 \f "Symbol"�[0,1]





i(x,x)=1





Axiom 6. 





for each x,y �SYMBOL 206 \f "Symbol"�[0,1]





i(x,i(y,x)=1





Axiom 7. continuity





the function i is in [0,1] a continuous function





Axiom 8. possibility to define ordering relation by i  �SYMBOL 206 \f "Symbol"�[0,1]





for each x,y �SYMBOL 206 \f "Symbol"�[0,1] x�SYMBOL 163 \f "Symbol"�y is true if and only if i(x,y)=1





Axiom 9. the function i is involutor:





for each x �SYMBOL 206 \f "Symbol"�[0,1]





i(i(x,0),0)=x





3.4. Fuzzy implication forms





3.4.1 S-implications





Consider any S-norm s and a negation n. The fundament of the fuzzy implications is the twovalued imlication logic function:





i(x,y)=non(x) or y





for each x,y�SYMBOL 206 \f "Symbol"�{0,1}





Definition: any mapping i is an implication made by s and n for each x,y�SYMBOL 206 \f "Symbol"�[0,1] if 





i(x,y)=s(n(x),y)





Examples for S-implications:





a) Kleene-Dienes-Implication





impKD(x,y)=max(1-x,y)





This implication is obviously an implication composed by the S-norm max(x,y) and the negation n(x)=1-x from Lukasiewicz.





b) Lukasiewicz implication





iL(x,y)=min(1,1-x+y)





This implication is obviously an implication composed by the S-norm min(1,x+y) and the negation n(x)=1-x from Lukasiewicz.





c) Implication defined by Reichenbach





iR(x,y)=1-x+x*y





This implication is obviously an implication composed by the S-norm x+y-x*y and the negation n(x)=1-x from Lukasiewicz.





d) The weak-drastic Implication





�EMBED Equation ���





This implication is obviously an implication composed by the weak-drastic S-norm and the negation n(x)=1-x from Lukasiewicz. Where the weak-drastic S-norm is:


�EMBED Equation ���





3.4.2 R-Implication





The fundament of the fuzzy s-implications was the boolean implication between two logic variable:





i(x,y)=s(n(x),y)





The fundament of the fuzzy r-implications is an other form of the boolean implication between two logic variable:





for each x,y�SYMBOL 206 \f "Symbol"�{0,1}





i(x,y)=Max{z�SYMBOL 189 \f "Symbol"�(x and z)�SYMBOL 163 \f "Symbol"�y and z�SYMBOL 206 \f "Symbol"�{0,1}}





Examples:





a) Lukasievicz implication





i(x,y)=min(1,1-x+y)





is an R-implication composed by the t-norm t(x,y)=max(0,x+y-1).





b) Gödel-implication





�EMBED Equation ���





is an R-implication composed by the t-norm t(x,y)=min(x,y).





c) Gougen-implication





�EMBED Equation ���





3.4.3 QL-implications





This class of implication was introduced by Zadeh. The fundament of this implications is a similar form to the boolean implication:





for each x,y�SYMBOL 206 \f "Symbol"�{0,1}





i(x,y)=s(n(x),t(x,y))





Examples:





a) Kleene-Dienes-Implication





iKD(x,y)max(1-x,y)





is a QL-implication composed by the t-norm t(x,y)=max(0,x+y-1), s-norm min(1,x+y), negation n(x)=1-x.





b) Zadeh-implication





iZ(x,y)=max(1-x,min(x,y))





is a QL-implication composed by the t-norm t(x,y)=min(x,y), s-norm max(x,y), negation n(x)=1-x.
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4.Fuzzy relations





Relations on crisp and fuzzy sets





The sense of the relation on crisp sets represents the absence of association, interaction, or interconnectness between the elements of two or more sets. The strenght of the relation among the sets is in the crisp case just by simly "yes" or "no" express. The fuzzy relations represent this strenght by membership grades, as the membership degrees are represented  in fuzzy sets. The stronger the connection among the elements is the higher is the membership grade. The crisp relations can be viewed as the restricted case of the fuzzy relations where if the connection exists between elements of set the membership grade is 1, and if it does not exist the membership grade is 0.





4.1. Definitions:





Cartesian product: the cartesian product of two sets  X , Y is the set of ordered pairs taken the first element from set X and the second element from the set Y. The Cartesian product is denoted by X x Y, but X x Y�SYMBOL 185 \f "Symbol"�Y x X if X�SYMBOL 185 \f "Symbol"�Y





�EMBED Equation ���





The relation among crisp sets  X1,X2,X3,...,Xn is the subset of the �EMBED Equation ��� Cartesian product, wich can be defined as R(X1,X2,X3,...,Xn ) 





R(X1,X2,X3,...,Xn )�EMBED Equation ���X1�SYMBOL 180 \f "Symbol"�X2�SYMBOL 180 \f "Symbol"�X3�SYMBOL 180 \f "Symbol"�...�SYMBOL 180 \f "Symbol"�Xn 





The relation can be described by its charasteristic function, wich is two valued in the case of a crisp relation:





�EMBED Equation ���	(4.1)�


In the case of a fuzzy relation 





�EMBED Equation ���	(4.2)





The membership function showes how strong is the relation among the elements of vector (x1,x2,...,xn) . The fuzzy relation is defined on the Cartesian product of  X1,X2,....Xn 





The relation can be represented in a form of a list, a membership array, and graphical description. The following example showes these forms for crisp and fuzzy relations .
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�
a1�
a2�
a3�
�
b1�
1�
0�
1�
�
b2�
1�
1�
0�
�
b3�
0�
0�
1�
�
b4�
1�
0�
0�
�



figure 4.1 Crisp relations
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�
a1�
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a3�
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b2�
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�



figure 4.2 Fuzzy relations





�SYMBOL 109 \f "Symbol"�R= 0.5/(a1,b1)+0.3/(a1,b2)+0.2/(a1,b4)+0.1/(a2,b2)+1.0/(a3,b1)+0.7/(a3,b3)





Subsequence:





Consider  x=(xi �SYMBOL 124 \f "Symbol"� i�SYMBOL 206 \f "Symbol"�N) �SYMBOL 206 \f "Symbol"� �SYMBOL 180 \f "Symbol"�Xi �SYMBOL 124 \f "Symbol"� i�SYMBOL 206 \f "Symbol"�N the sequence on  Cartesian product �SYMBOL 180 \f "Symbol"�Xi �SYMBOL 124 \f "Symbol"� i�SYMBOL 206 \f "Symbol"�N


and


 y=(yj �SYMBOL 124 \f "Symbol"� j�SYMBOL 206 \f "Symbol"�J) �SYMBOL 206 \f "Symbol"� �SYMBOL 180 \f "Symbol"�Xj �SYMBOL 124 \f "Symbol"� j�SYMBOL 206 \f "Symbol"�J the sequence on  Cartesian product �SYMBOL 180 \f "Symbol"�Xj �SYMBOL 124 \f "Symbol"� j�SYMBOL 206 \f "Symbol"�N


where J�SYMBOL 204 \f "Symbol"�N  y is a subsequence of x if and only if xj=yj for each j�SYMBOL 206 \f "Symbol"�J. 





Formally:y�SYMBOL 60 \f "Symbol"�x.





Projection: 





Consider the relation R(X1,X2,...,Xn ) . Let us define the projection of R  onto Y described by [R�SYMBOL 175 \f "Symbol"�Y], where the variables from the set X are


Y=(Xj �SYMBOL 124 \f "Symbol"� j�SYMBOL 206 \f "Symbol"�J �SYMBOL 204 \f "Symbol"�N)





The membership function of the relation is given as following:


�EMBED Equation ���, where Y is a subsequence of X





�EMBED MSDraw   \* MERGEFORMAT�����Example: givencrisp sets X1=(1,2,3), X2=(+,*), X3=(a,b,c) . consider the  relation R(X1,X2,X3) defined on Cartesian product X=X1�SYMBOL 180 \f "Symbol"�X2�SYMBOL 180 \f "Symbol"�X3  { for example.: (1,+,a)�SYMBOL 206 \f "Symbol"�X }





�SYMBOL 109 \f "Symbol"�R= 0.8/(1,+,a)+0.6/(1,+,c)+1.0/(1,*,b)+0.7/(1,*,c)+0.2/(2,+,a)+0.4/(2,+,b)+ 0.6/(2,*,b) +0.7/(3,+,a)+0.9/(3,+,b)+0.4/(3,*,c)





Let us calculate the following relations:





a) R1=R�SYMBOL 175 \f "Symbol"�X1�SYMBOL 180 \f "Symbol"�X2


b) R2=R�SYMBOL 175 \f "Symbol"�X1�SYMBOL 180 \f "Symbol"�X3


c) R3=R�SYMBOL 175 \f "Symbol"�X1





From the definition of projection:


a)R1=0.8/(1,+)+1.0/(1,*)+0.4/(2,+)+0.6/(2,*)+0.9/(3,+)+0.4/(3,*)





b)  R2=0.8/(1,a)+1.0/(1,b)+0.7/(1,c)+0.2/(2,a)+0.6/(2,b)+0.7/(3,a)+0.9/(3,b)+0.4/(3,c)





c)R3=1.0/(1)+0.6/(2)+0.9/(3)





Cylindric extension


The cylindric extension is in some sense the inverse of the projection. Consider the set X that is a subset of Y . The elements of Y that are not contained in X are in the set Y-X . The relation R is defined on the set X The cylindric extension of the relation R into the Y-X space is denoted by [R�SYMBOL 173 \f "Symbol"�Y-X], and its membership function is:





�SYMBOL 109 \f "Symbol"�[R�SYMBOL 173 \f "Symbol"�Y-X](y)=�SYMBOL 109 \f "Symbol"�R(x) 





for each  y>x (subsequence). 
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We can state that for each relation extended by the cylindric extension the projection afterwards gives back the original relation. 





(R�SYMBOL 173 \f "Symbol"�(Y-X)�SYMBOL 175 \f "Symbol"�X)=R. 





The inverse sequence of operation is projection and extension, but it gives back the original relation just in special cases.





Cylindric closure:


Relations can be very good approximated if they projections are known. The cylindric closure reconstruct the relation from its projections. Formally:





given:	R1=[R�SYMBOL 175 \f "Symbol"�Y1],R2=[R�SYMBOL 175 \f "Symbol"�Y],...,Rn=[R�SYMBOL 175 \f "Symbol"�Yn]


and considered	�SYMBOL 180 \f "Symbol"�Yi=X


	cyl{Ri}=R�SYMBOL 162 \f "Symbol"�   


where	R�SYMBOL 162 \f "Symbol"��SYMBOL 187 \f "Symbol"�R


the membership function of the cylindric extension can be calculated:


�EMBED Equation ���


where y<x (subsequence).
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4.2 Binary relations





Relations defined between two set X1, X2 are called binary relations (X=X1�SYMBOL 180 \f "Symbol"�X2) .  We denote the binary relations by the forms R(x,y) or xRy. Binary relations are described as lists arrays or graphs.





Definitions:


At first we make some definitions related to binary fuzzy relations.
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�Domain: the domain of any crisp relation R(X,Y) is the crisp subset of  X whose members participate in the relation.:
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For fuzzy relations the domain can be represented by its membership function:





�EMBED Equation ���





Range: the range of any R(X,Y) crisp relation is the crisp subset of Y whose members participate in the relation:
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For fuzzy relations the range can be represented by its membership function:
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If we take a closer look at these definitions we can easily show that:





dom(R)=[R�SYMBOL 175 \f "Symbol"�X] and ran(R)=[R�SYMBOL 175 \f "Symbol"�Y].





Height: the height of a fuzzy relation is the largest membership grade of its membership function.


h(R)=max max �SYMBOL 109 \f "Symbol"�R(x,y)


If the largest membership grade is 1 , h(R)=1 then the relation is normal, in other cases it is subnormal.





In addition to the above definotions we can build the following classes of fuzzy relations. 





a) if  dom (R)=X then the relation is called fully specified





b) if  dom (R)�SYMBOL 204 \f "Symbol"�X then the relation is called not fully specified





c) if  ran (R)=Y then the relation is called surjektiv





d) if  ran (R)�SYMBOL 204 \f "Symbol"�Y then the relation is called injektiv





e) if each element in the domain of any  R relation is just one times participated in the relation then the relation is called function.








f) if the point e) is not true then the relation is called multivalued relation





g) if the range of the relation involves elements that are related in the domain to more then one element then the relation is called type many to one





h) if each element of the domain is related to only one element of the range then the relation is called function with inverse.





Resolution form of binary relations: in the case of fuzzy relations we can define the  �SYMBOL 97 \f "Symbol"� cut as we seen by the fuzzy sets. The �SYMBOL 97 \f "Symbol"� cut of a fuzzy relation is denoted by R�SYMBOL 97 \f "Symbol"�. The resolution form of  the fuzzy relation R is with the above definition of �SYMBOL 97 \f "Symbol"� cut:





R= �SYMBOL 200 \f "Symbol"�  �SYMBOL 97 \f "Symbol"�R�SYMBOL 97 \f "Symbol"�  �SYMBOL 124 \f "Symbol"� �SYMBOL 97 \f "Symbol"� < h(R)





where �SYMBOL 97 \f "Symbol"�R�SYMBOL 97 \f "Symbol"� i is a fuzzy relation with the membership function �SYMBOL 109 \f "Symbol"��SYMBOL 97 \f "Symbol"�R�SYMBOL 97 \f "Symbol"�(x,y)=  �SYMBOL 97 \f "Symbol"� �SYMBOL 109 \f "Symbol"�R�SYMBOL 97 \f "Symbol"�(x,y) for each (x,y)�SYMBOL 206 \f "Symbol"�X�SYMBOL 180 \f "Symbol"�Y, and the union is the fuzzy max opration.





Let us take an example of the resolution form:


Consider Mr the matrix of  fuzzy relation R:
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The resolution form from the definition:
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Composition of relations:





consider two binary crisp relations P(X,Y) és Q(Y,Z) with a common set Y 


The composition of these two relations is defined on the Cartesian product XxZ:





R(X,Z)=P(X,Y) o Q(Y,Z)





The properties of the binary composition are:





1) PoQ�SYMBOL 185 \f "Symbol"�QoP





2) (PoQ)-1=Q-1oP-1





3) (PoQ)oR=Po(QoR)





For realising a composition between fuzzy sets there are many possibily ways because of the several norms. The general form of fuzzy composition is denoted by its membership function:





�SYMBOL 109 \f "Symbol"�PoQ(x,y)=  S {�SYMBOL 109 \f "Symbol"�P(x,y) T �SYMBOL 109 \f "Symbol"�Q(y,z)}, where S and T are fuzzy norms





The mostly used fuzzy composition is realised by the simpliest fuzzy norms by max-min operations. The composition is called max-min composition.


The membership function of the max-min composition :





�SYMBOL 109 \f "Symbol"�PoQ(x,y)=  max {min[�SYMBOL 109 \f "Symbol"�P(x,y) , �SYMBOL 109 \f "Symbol"�Q(y,z)]}





Let us take an example for max-min composition between two binary fuzzy relations:
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Where we calculated the first column as follows:





0.3=max{min(0.3,0.4),min(0.5,0.2),min(0.8,0.0)}


0.2=max{min(0.0,0.4),min(0.7,0.2),min(1.0,0.0)}


0.4=max{min(0.4,0.4),min(0.6,0.2),min(0.5,0.0)}





An alternative form of fuzzy binary compositions is the max-product composition, where as t-norm we take the algebraic product. The membership function of the max-product composition is:





�SYMBOL 109 \f "Symbol"�PoQ(x,y)=  max {�SYMBOL 109 \f "Symbol"�P(x,y) * �SYMBOL 109 \f "Symbol"�Q(y,z)}





The max-product composition gives the following result for the above P and Q relations.
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Relational join:





Consider two binary relations:Adott két bináris reláció:


P�SYMBOL 204 \f "Symbol"�X�SYMBOL 180 \f "Symbol"�Y, Q�SYMBOL 204 \f "Symbol"�Y�SYMBOL 180 \f "Symbol"�Z


The relational join R=P*Q  for each (x,y,z)�SYMBOL 206 \f "Symbol"�R and consider (x,y)�SYMBOL 206 \f "Symbol"�P, (y,z)�SYMBOL 206 \f "Symbol"�Q


is denoted by the membership function:





�SYMBOL 109 \f "Symbol"�R(x,y,z)= min {�SYMBOL 109 \f "Symbol"�P(x,y), �SYMBOL 109 \f "Symbol"�Q(y,z)}, for each x�SYMBOL 206 \f "Symbol"�X, y�SYMBOL 206 \f "Symbol"�Y, z�SYMBOL 206 \f "Symbol"�Z 





The relational join is connected to the composition. By a simply modification of the relational join we obtain the composition of two relations.





 �SYMBOL 109 \f "Symbol"�PoQ(x,y)=  max {�SYMBOL 109 \f "Symbol"�PoQ(x,y,z) } for each x�SYMBOL 206 \f "Symbol"�X, z�SYMBOL 206 \f "Symbol"�Z





Note the inverse operation is not possibile. 





Example:





Given sets X=(x1,x1),  Y=(y1,y2),  Z=(z1,z2) 


P and Q are fuzzy relations defined on (X,Y)





P=0.3/(x1,y1)+0.8/(x1,y2)+0.6/(x2,y1)+1.0/(x2,y2)�Q=0.4/(y1,z1)+0.9/(y1,z2)+0.0/(y2,z1)+0.2/(y2,z2)�


The relational join of these relations is:





P*Q=0.3/(x1,y1,z1)+0.3/(x1,y1,z2)+0.0/(x1,y2,z1)+0.2/(x1,y2,z2)+0.4/(x2,y1,z1)+0.6/(x2,y1,z2)+0.0/(x2,y2,z1)+0.2/(x2,y2,z2)





As before mentioned the max-min composition can be simply obtained:





PoQ=0.3/(x1,z1)+0.3/(x1,z2)+0.4/(x2,z1)+0.6/(x2,z2)


�
4.3. Binary relations on same sets





	As it is possible to define binary relations between elements of different sets, it is possible between elements of the same set. This relation can be represented the same way as mentioned before by general binary relations. Binary relations are described as lists arrays or graphs.





Binary crisp relations have three main properties that give the possibility to distinguish them:





a) the relation R(X,X) is reflexive if and only if (x,x)�SYMBOL 206 \f "Symbol"�R for each x�SYMBOL 206 \f "Symbol"�X. If there is any x�SYMBOL 206 \f "Symbol"�X  that it is not true then the relation is irreflexive. If  (x,x)�SYMBOL 207 \f "Symbol"�R for each x�SYMBOL 206 \f "Symbol"�X-re then the relation is  antireflexive.





b) the relation R(X,X) is symmetric if and only if (x,y)�SYMBOL 206 \f "Symbol"�R for each  x,y�SYMBOL 206 \f "Symbol"�X. If there is any x,y�SYMBOL 206 \f "Symbol"�X that it is not true then the relation is aymmetric. If (x,y)�SYMBOL 206 \f "Symbol"�R and  (y,x)�SYMBOL 206 \f "Symbol"�R is true only if x=y for each x,y�SYMBOL 206 \f "Symbol"�X then the relation is antisymmetric. If either (x,y)�SYMBOL 206 \f "Symbol"�R or (y,x)�SYMBOL 206 \f "Symbol"�R whenever x�SYMBOL 185 \f "Symbol"�y then the relation is strictly antisymmetric. 





c) the relation R(X,X) is  transitive if and only if (x,z)�SYMBOL 206 \f "Symbol"�R whenever both (x,y)�SYMBOL 206 \f "Symbol"�R and (y,z)�SYMBOL 206 \f "Symbol"�R for at least one  y�SYMBOL 206 \f "Symbol"�X. If it is not true then the relation is  nontransitive. If (x,z)�SYMBOL 207 \f "Symbol"�R whenever (x,y)�SYMBOL 206 \f "Symbol"�R (y,z)�SYMBOL 206 \f "Symbol"�R then the relation is antitranzitive.





The same properties are expressed for fuzzy relations by their membership functions:





a) the fuzzy relation R(X,X) is reflexive if and only if





�SYMBOL 109 \f "Symbol"�R(x,x)= 1





for each x�SYMBOL 206 \f "Symbol"�X. If there is any x�SYMBOL 206 \f "Symbol"�X  that it is not true then the relation is irreflexive. If  (x,x)�SYMBOL 207 \f "Symbol"�R for each x�SYMBOL 206 \f "Symbol"�X-re then the relation is  antireflexive.





b) the fuzzy relation R(X,X) is symmetric if and only if





�SYMBOL 109 \f "Symbol"�R(x,y)=�SYMBOL 109 \f "Symbol"�R(x,y) 





for each x,y�SYMBOL 206 \f "Symbol"�X. If there is any x,y�SYMBOL 206 \f "Symbol"�X that it is not true then the relation is aymmetric. If �SYMBOL 109 \f "Symbol"�R(x,y)>0 and �SYMBOL 109 \f "Symbol"�R(y,x)>0  is true only if x=y for each x,y�SYMBOL 206 \f "Symbol"�X then the relation is antisymmetric. 





c) the fuzzy relation R(X,X) is transitive (exactly max-min tranzitive) if and only if





�SYMBOL 109 \f "Symbol"�R(x,z)�SYMBOL 179 \f "Symbol"� max min [�SYMBOL 109 \f "Symbol"�R(x,y),�SYMBOL 109 \f "Symbol"�R(y,z)]





for each (x,z)�SYMBOL 206 \f "Symbol"�X2. If it is not true then the relation is nontransitive. 





Tranzitive closure: the transitive closure denoted by RT of a fuzzy relation R(X,X) is transitive, it involves the fuzzy relation R(X,X) and has the least membership grade. The transitive closure can be generated by the following algorythm





a) R�SYMBOL 162 \f "Symbol"�= R �SYMBOL 200 \f "Symbol"� (RoR)





b) ha R�SYMBOL 162 \f "Symbol"��SYMBOL 185 \f "Symbol"� R, akkor R=R�SYMBOL 162 \f "Symbol"� GOTO (a)





c) R�SYMBOL 162 \f "Symbol"�=RT





If the used composition operation is a max-min composition then RT  is called max-min transitive closure. Consider the following fuzzy relation R given by its matrix form:





�EMBED Equation ���  





Let us calculate the transitive closure of the relation:





 �EMBED Equation ���  �EMBED Equation ���





�EMBED Equation ���  �EMBED Equation ���


�
4.4. Classification of relations based on their properties





a) Equivalence and similarity relations





The crisp relation that satisfy reflexivity,  symmetry and  transitivity is called equialence relation. The  binary fuzzy relation that satisfy the same properties is called similarity relation. ( the transitivity is in this case  max-min transitivity) The similarity relation builds the group of elements called similarity class whose elements have membership grades depending on their similarity to a defined x�SYMBOL 206 \f "Symbol"�X. If the membership grades of smilarity are restricted to the values 0 and 1 then we obtain the equialence class





For example the mentioned  �SYMBOL 97 \f "Symbol"�-cuts of any R relation (R�SYMBOL 97 \f "Symbol"�) are equialence relations





 R= �SYMBOL 200 \f "Symbol"�  �SYMBOL 97 \f "Symbol"�R�SYMBOL 97 \f "Symbol"�  �SYMBOL 124 \f "Symbol"� �SYMBOL 97 \f "Symbol"� < h(R). 





b) Compatibility and tolerance relations





The binary relations that satisfy the properties reflexivity and symmetry are called compatibility or tolerance relations. 





c) Orderings:





The symmetry was the most important property in the case of similarity and tolerance relations. The orderings are characterised the same way by the asymmetry.


Consider a crisp binary relation R(X,X) that is reflexive, asymmetric and tranzitive ,it is called partial ordering. Formally:  x �SYMBOL 163 \f "Symbol"� y 


The inverse of the partial ordering is R-1(X,X): x �SYMBOL 179 \f "Symbol"� y. The fuzzy partial ordering is characterised by reflexivity , asymmetry, and any form of fuzzy tranzitivity.





To summarise the properties and the by them defined classes of  fuzzy relations we show them  in a common table:











 �
reflexive �
antireflexive �
symmetric �
antisymmetric �
tranzitive�
�
 similarity�
�SYMBOL 183 \f "Symbol"��
�
�SYMBOL 183 \f "Symbol"��
�
�SYMBOL 183 \f "Symbol"��
�
 quasi-equivalence�
�
�
�SYMBOL 183 \f "Symbol"��
�
�SYMBOL 183 \f "Symbol"��
�
 tolerance�
�SYMBOL 183 \f "Symbol"��
�
�SYMBOL 183 \f "Symbol"��
�
�
�
partial ordering�
�SYMBOL 183 \f "Symbol"��
�
�
�SYMBOL 183 \f "Symbol"��
�SYMBOL 183 \f "Symbol"��
�
 quasi -ordering�
�SYMBOL 183 \f "Symbol"��
�
�
�
�SYMBOL 183 \f "Symbol"��
�
 strictly ordering�
�
�SYMBOL 183 \f "Symbol"��
�
�SYMBOL 183 \f "Symbol"��
�SYMBOL 183 \f "Symbol"��
�



�
4.5 An other type of fuzzy relations : fuzzy preference relations and its application in preference modelling





These unit showes an axiomatic approach to the definition of fuzzy strict preference P, indifference I and incomparability J with fuzzy preference relations.





Preference modelling is an indispensable part of operational research, decision making, sociology, economy etc. The classical theory of preference modelling is adequate in a lot of situations. If A is a crisp set of alternatives and R is a binary crisp relation on crisp set A with 





aRb ( a is not worse than b,





where a,b (A, then one can define three binary relations associated with R in the following way:


1) strict preference relation P: aPb ( aRb and not bRa





2) indifference relation I: aIb ( aRb and bRa





3) incomparability relation J: aJb ( not aRb and not bRa





The set theoretical equialent of the verbal expressions are:





P=R(Rd	(4.5.1)





I=R(R-1	(4.5.2)





P=Rc(Rd	(4.5.3)





where R-1   ,Rdand Rc are the inverse, the complement and the dual of R (Rd  = (R-1) c), respectively. On the other hand, P is asymmetric, I and J are symmetric relations.


Further basic connections among P,I,J and R can be considered:





P(I=R	(4.5.4)


P(I=(	(4.5.5)


P(J=(	(4.5.6)


I(J=(	(4.5.7)





Its easy to see that relations (4.5.1), (4.5.2), (4.5.3)have equivalent forms in terms of the set-difference operation (\) as follow:





P=R\R-1	(4.5.8)





I=R\Rd	(4.5.9)





J=Rc\R-1	(4.5.10)





Now we have to examine the strict preference, indifference, incomparability when the R relation is a fuzzy preference relation.. Basic properties for the exemination are the classical forms (4.5.4)-(4.5.7).





Axioms for P,I,J:





We assume that R is a fuzzy preference relation, i.e. a function R: AxA([0,1] such that for any a,b(A, R(a,b) is the truth value of the statement " a is not worse than b".





Axiom 1.


 For any two alternatives a,b the values of P(a,b), I(a,b) and J(a,b) depend only on R(a,b) and R(b,a).





According to Axiom 1 wich is called 'independence of irrelevant alternatives', there exists three functions p,i,j :[0,1]x[0,1]([0,1] such that





P(a,b)=p(R(a,b),R(b,a)) 	(4.5.11)





I(a,b)=i(R(a,b),R(b,a)) 	(4.5.12)





J(a,b)=j(R(a,b),R(b,a)) 	(4.5.13)





Axiom 2. 





p(x,y) is nondecreasing in its first place and nonincreasing in its second place;


i(x,y) is nonincreasing with respect to both arguments;


j(x,y) is nonincreasing in each one of its places





Axiom 2. is called a positive association principle.





Axiom 3.


 P is asymmetric, I and J are symmetric relations.





Axiom 3 asserts that 


a) min{P(a,b), P(b,a)}=0 for any a,b(A 


b) I(a,b)=I(b,a) for every a,b(A 


b) J(a,b)=J(b,a) for any a,b(A 





or equivalently,


a')x(y implies p(x,y)=0 (x,y([0,1])


b')i(x,y)=i(y,x) for every x,y([0,1])


c')j(x,y)=j(y,x) for every x,y([0,1])





Now we need approriate functions for p, i and j in accordance with Axiom1..Axiom 3. and also with fuzzy set theoretic operations.





Let us take a t-norm T: [0,1]x[0,1]([0,1], that is commutative, associative, nondecreasing, continuous, Archimedean and has zero divisors. (see in unit 2.5.2) For any t-norm T a pseudocomplement T( can be defined by:


T((x,y)=sup{z;T(x,z)(y}. 	(4.5.14)





T((x,y) can be viewed as a fuzzy implication operator.





Lemma (proof see in [1])





a) for any continuous t-norm T we have T(x,y)(z if and only if T((x,z)(y.





b)for any continuous t-norm T the equation T(x, T((x,y))=y holds if and only if x(y.





c) if T is continuous and has zero divisors, then T is Archimedean.





d) if T is a continuous, Archimedean t-norm with zero divisors then t is strictly increasing in both arguments on the set {(x,y);T(x,y)>0}.





Assume now that (T,S,n) is a De Morgan triple, i.e. T is a continuous t-norm, n is a strict negation and 





S(x,y)=n-1[T(n(x),n(y))] 	(4.5.15)





is the n-dual t-conorm to T.


Denoting x=R(a,b), y=R(b,a) for short and using (4.5.11), (4.5.12), (4.5.13) one can easily translate relations (4.5.4), (4.5.5), (4.5.6) and (4.5.7). 





S(p(x,y),i(x,y))=x	(4.5.16)





T(p(x,y),i(x,y))=0	(4.5.17)





T(p(x,y),j(x,y))=x	(4.5.18)





T(i(x,y),j(x,y))=x	(4.5.19)





If we define P, I, J by (4.5.1), (4.5.2) and (4.5.3) the we obtain 





p(x,y)=T(x,n(y))	(4.5.20)





i(x,y)=T(x,y)	(4.5.21)





j(x,y)=T(n(x),n(y))	(4.5.22)





Now we try to use (4.5.8), (4.5.9) and (4.5.10) we get:





i(x,y)=p(x,n(y))	(4.5.23)








Theorems (proof  see by Fodor [1]):





4.5.1) There is no De Morgan triple (T,S,n) such that (4.5.16) and (4.5.17) hold for p and i defined by (4.5.20) and (4.5.21) respectively.





4.5.2) There is no De Morgan triple (T,S,n) such that p and i defined by (4.5.23)


fulfil equation (4.5.16)





One way to get a solution for p, i, j change or leave out some of the formulare (4.5.1)-(4.5.3) and/or (4.5.8)-(4.5.10).


Equation (4.5.4) has an equivalent form in the crisp case :





Rd=P(I, 


wich means in our situation the following:


S(p(x,y),j(x,y))=n(y)	(4.5.24)





The system consists of equations (4.5.16) and (4.5..1), without any assumption on the form of  p, i, j. Its solution is given in the next theorem.





Theorem 4.5.3:


Assume that Axiom 1...,Axiom 3. hold. Then 





<p, i, j, T, S, n>





fulfils the equations





S(p(x,y),i(x,y))=x





S(p(x,y),j(x,y))=n(y)





if and only if 


a) T is continuous, Archimedean t-norm with zero divisors





b) n(x)= T((x,0)





c) S(x,y)=n[T(n(x),n(y))]





d) p(x,y)=T(x,n(y))





e) i(x,y)=min{x,y}





f) j(x,y)=min{n(x),n(y)}





Summarising the results reasonable expression for P, I, and J are proposed as follows:





P(a,b)=T(R(a,b),n[R(b,a)])





I(a,b)=min{R(a,b),R(b,a)},





J(a,b)=min{n[R(a,b)],n[R(b,a)]},





where (T,S,n) is given e. g. by Theorem 4.5.3





The result of our investigation can be very useful in decision supportter systems, and has practical applications.
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