Application of Laplace transforms to the solution of linear ordinary differential equations


With the aid of the Laplace transforms and its theorems and also using the transform table, linear ordinary differential equations given by Equation (1.1) can be solved easily. The advantage is that, with the aid of a transform table the steps involved are all algebraic and the homogeneous solution as well the particular solution is obtained simultaneously.


We can apply the Laplace transform for every term of Equation (1.1). By using the theorem of Equation (1.43) the transforms of the terms from the left-hand side part are:


� EINBETTEN Equation.2  ���,	(1.55)


and for the terms from the right-hand side:


� EINBETTEN Equation.2  ���,	(1.56)


where the polynomials � EINBETTEN Equation.2  ��� (� EINBETTEN Equation.2  ���) and � EINBETTEN Equation.2  ��� (� EINBETTEN Equation.2  ���) represent the initial conditions associated with each transform.


Transforming each term of Equation (1.1) accordingly and collecting the terms representing the initial conditions yields:


� EINBETTEN Equation.2  ���	(1.57)


Solving Equation (1.57) for � EINBETTEN Equation.2  ��� gives:


� EINBETTEN Equation.2  ���,	(1.58)


where � EINBETTEN Equation.2  ��� is the sum of all the initial conditions:


� EINBETTEN Equation.2  ���.	(1.59)


By comparison of Equation (1.58) and Equation (1.18), it is to be noted that the characteristic function (polynomial) in the s domain, � EINBETTEN Equation.2  ���, is the same as that in the D domain, � EINBETTEN Equation.2  ���. The numerator also has the same form, with the exception that the initial conditions � EINBETTEN Equation.2  ��� are added in the s domain. Comparison shows also that when all initial conditions are zero, the Laplace transform is obtained by substituting s for D, � EINBETTEN Equation.2  ��� for � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� for � EINBETTEN Equation.2  ��� in the operational form of Equation (1.17).


For this case we can write:


� EINBETTEN Equation.2  ���,	(1.60)


where � EINBETTEN Equation.2  ��� is called the transfer function. It can be easily demonstrated that the transfer function equals the Laplace transform of the weighting function, that is the unitary impulse response of that linear, time-invariant system (model).


Notice that the polynomials � EINBETTEN Equation.2  ���and� EINBETTEN Equation.2  ��� are obtained directly from the differential Equation (1.1). Thus, the transfer function contains basic information concerning the essential characteristics of a system without regard to initial conditions or excitation. The transfer function (together with the block diagram) forms the basis of representing the input-output relationships of linear time-invariant systems in classical control theory.


The term � EINBETTEN Equation.2  ��� in Equation (1.58) is the general representation for the Laplace transform of the input signal. This term may be written as a ratio of two polynomials:


� EINBETTEN Equation.2  ���,	(1.61)


where � EINBETTEN Equation.2  ��� is the numerator of � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� is the denominator of � EINBETTEN Equation.2  ���. Substitution of Equation (1.61) in Equation (1.58) yields the following general form for � EINBETTEN Equation.2  ���:


� EINBETTEN Equation.2  ���,	(1.62)


where � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� are polynomials in s.


The operation of obtaining � EINBETTEN Equation.2  ��� from its Laplace transform � EINBETTEN Equation.2  ��� is performed by the inverse Laplace transform:


� EINBETTEN Equation.2  ���.	(1.63)


For evaluation of the inverse Laplace transform the Formula (1.40) is not employed when the much simpler process of reading directly from a transforms table can be utilised. This is the case for practical applications of ordinary control analysis. At first it would appear that the listing of transforms of Table 1.2 would have to be extended considerably to be applicable. However, this is not the case. The reason is that relatively few different types of terms appear if after Equation (1.62) has been expanded by partial-fraction expansion.


In particular, the problem is similar to that discussed when the differential operator was used: first, one have to find out the p zeros of polynomial � EINBETTEN Equation.2  ���. Notice that the number of zeros is grater then the order of the differential equation. Thus, � EINBETTEN Equation.2  ���. The zeros (referred sometimes as poles) are either real or complex-conjugate pairs, simple (distinct zeros) or multiple (repeated). The solving procedure is somehow different and the inverse Laplace transform is performed adequately. This is to be presented now.


a) � EINBETTEN Equation.2  ��� has distinct zeros


The polynomial � EINBETTEN Equation.2  ��� can be factored into the form:


� EINBETTEN Equation.2  ���,	(1.64)


where � EINBETTEN Equation.2  ��� are the roots (p distinct zeros) of the equation:


� EINBETTEN Equation.2  ���.	(1.65)


The polynomial fraction � EINBETTEN Equation.2  ��� in Equation (1.62) may be written in the form:


� EINBETTEN Equation.2  ��� .	(1.66)


The procedure for obtaining any constant � EINBETTEN Equation.2  ��� is analogous to Equation (1.21). So,:


� EINBETTEN Equation.2  ��� .	(1.67)


Successive application of relation (1.67) for � EINBETTEN Equation.2  ��� yields each of the constants � EINBETTEN Equation.2  ���, respectively. Performing the inverse Laplace transform for a term i gives:


� EINBETTEN Equation.2  ���,	(1.68)


so the general solution of Equation (1.1) is:


� EINBETTEN Equation.2  ���.	(1.69)


Relation (1.69) shows that each zero of Equation (1.65) yields an exponential-type term � EINBETTEN Equation.2  ��� in the response function, where the exponent � EINBETTEN Equation.2  ��� is the corresponding zero of given equation. Notice that each zero must be negative in order to obtain a time-decaying function. If any zero is positive, � EINBETTEN Equation.2  ��� will increase without bound as t increases to infinity. A constant term results if � EINBETTEN Equation.2  ���, that is a zero (or pole) is situated into the origin.


Comparing Equation (1.69) to Equation (1.2), it is easy to identify the homogeneous solution � EINBETTEN Equation.2  ��� and the particular one � EINBETTEN Equation.2  ���. If � EINBETTEN Equation.2  ��� are the n zeros of the characteristic equation � EINBETTEN Equation.2  ���, than the homogeneous solution is:


� EINBETTEN Equation.2  ���,	(1.70)


that is similar to Equation (1.7) or Equation (1.30) if the assumption � EINBETTEN Equation.2  ��� is made.


The remaining � EINBETTEN Equation.2  ��� roots are the � EINBETTEN Equation.2  ��� zeros of the polynomial equation � EINBETTEN Equation.2  ���. They will lead to the particular solution:


� EINBETTEN Equation.2  ���	(1.71).


These results underline again the fact that the homogeneous solution (obtained from the characteristic equation � EINBETTEN Equation.2  ���) is related to the internal structure of the system while the particular solution is due to the action of input signal or forcing function that characterises the connection of that considered system to its environment.


	b) � EINBETTEN Equation.2  ��� has multiple real zeros


Suppose that Equation (1.65) has a multiple order zero(or repeated pole) � EINBETTEN Equation.2  ��� which occurs � EINBETTEN Equation.2  ��� times. In this case the factoring of � EINBETTEN Equation.2  ��� yields:


� EINBETTEN Equation.2  ���.	(1.71)


The partial-fraction expansion in this case has the general form:


� EINBETTEN Equation.2  ���	(1.72)


The constants � EINBETTEN Equation.2  ��� are evaluated as before by application of (1.67). The constants � EINBETTEN Equation.2  ��� that arise from the partial-fraction expansion of the repeated zero are evaluated with the relation:


� EINBETTEN Equation.2  ���	(1.73)


The inverse transform (i.e., the general solution) is obtained from the transform table (Table 1.2.) and is found to be:


� EINBETTEN Equation.2  ���	(1.74)


Each response term associated with the repeated zero � EINBETTEN Equation.2  ��� is seen to be multiplied by the exponential factor � EINBETTEN Equation.2  ���. If the value of � EINBETTEN Equation.2  ��� is positive, then � EINBETTEN Equation.2  ��� will become infinite as time increases. For negative values of � EINBETTEN Equation.2  ���, a decreasing exponential result and thus the response term due to the repeated zero vanishes in time.


Illustrative example


Using the Laplace transforms, solve the following operator defined differential equation:


� EINBETTEN Equation.2  ���,


when all initial conditions are zero and the input function is � EINBETTEN Equation.2  ���.


Solution:


The Laplace transform of the input function is:


� EINBETTEN Equation.2  ��� .


All initial conditions are zero, so the differential operator D can be simply replaced by the Laplace operator s. So, one obtains:


� EINBETTEN Equation.2  ��� .


We have the repeated zero� EINBETTEN Equation.2  ��� of multiplicity order � EINBETTEN Equation.2  ��� and the simple zero � EINBETTEN Equation.2  ���.





The partial-fraction expansion of relation (1.72) gives:


� EINBETTEN Equation.2  ���.


From Equation (1.67) and Equation (1.73) we determine the coefficients:


� EINBETTEN Equation.2  ���


The solution results by applying the inverse Laplace transform from Equation (1.74):


� EINBETTEN Equation.2  ���.


Compare the result with that obtained by applying the differential operator method!


	c) � EINBETTEN Equation.2  ��� has simple complex zeros


Complex zeros always appear pairs since the coefficients of � EINBETTEN Equation.2  ��� are real. The poles are conjugates of one another. Thus, if � EINBETTEN Equation.2  ��� is a simple complex zero, so it is its complex conjugate � EINBETTEN Equation.2  ���, too. The partial-fraction expansion for simple roots given by Equation (1.66) is still valid and the coefficients can be determined with Relation (1.67), but the work is harder due to complex numbers (see next illustrative example!).


Therefor, it is preferable to stay in real. The complex zeros pair � EINBETTEN Equation.2  ��� give:


� EINBETTEN Equation.2  ���	(1.75)


Then, the corresponding partial fraction is:


� EINBETTEN Equation.2  ��� .	(1.76)


From Table 1.2 it is easy to obtain the inverse Laplace transform:


� EINBETTEN Equation.2  ��� .	(1.77)


The result is somehow similar to Equation (1.9), but notice that Equation (1.77) includes the initial conditions. To obtain the coefficients � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� first compute the complex value � EINBETTEN Equation.2  ���:


� EINBETTEN Equation.2  ���,	(1.78)


and then extract the coefficients � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� as imaginary and real parts of � EINBETTEN Equation.2  ���, respectively:


� EINBETTEN Equation.2  ��� .	(1.79)
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