The spectrum of a physical signal provides a convenient representation of the relative importance of each frequency component. Thus it would be very useful to have a similar representation for signals that are not periodic. This is provided by the Fourier transform of the respective signal. The Fourier transform of a signal x(t) by definition is:


� EINBETTEN Equation.2  ���.	(1.100)


The Fourier transform generally leads to a complex valued function X((). Note that for definition, the function x(t) must piecewise continuous on every finite interval and must be absolutely integrable on the t axis, that is that the following limits exist (and are finite!):


� EINBETTEN Equation.2  ���= finite.	(1.101)


For physical signals the last relation means that the energy content of the signal is limited.


The inverse transform is defined by:


� EINBETTEN Equation.2  ���.	(1.102)


Note the similarities to the Laplace transform. Here the integral is taken over all time rather than only over positive time. The transform variable ( is a real number and is taken to be the circular frequency. If x(t)=0 for � EINBETTEN Equation.2  ��� and if the region of convergence for the Laplace transform includes the imaginary axis, then results:


� EINBETTEN Equation.2  ���,	(1.103)


where X(s) is the Laplace transform of x(t).


The Euler formula relating the complex exponential in (1.100) to � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� can be used to present the heuristic deviation of the Fourier transform pair from the Fourier series formulas for An. The essence of the argument is to allow the period � EINBETTEN Equation.2  ��� to approach infinity while the separation in signal frequencies is allowed to approach zero. In the limit, the summation in Equation (1.99) approaches the integral in Equation (1.100). The discrete frequency spectrum of a periodic signal, becomes a continuous spectrum for an aperiodic one. The magnitude � EINBETTEN Equation.2  ��� of the Fourier transform for aperiodic signals can be used as a measure of the signal’s frequency content, just as An is used for periodic signals. The plot of � EINBETTEN Equation.2  ��� versus ( will be the spectrum of x(t).


Illustrative example


Compute the Fourier-transform and show the spectrum of the pulse train � EINBETTEN Equation.2  ��� and of its approximation by impulse train � EINBETTEN Equation.2  ���.


Solution:


The pulse train � EINBETTEN Equation.2  ��� is assumed to consist of a train of rectangular pulses with height � EINBETTEN Equation.2  ��� and width p. This can be considered as a result of a modulation process given by a switch generating a carrier signal in the form of a rectangular pulse train p(t) of width p and of unitary height:


� EINBETTEN Equation.2  ���.


Thus, 1(t) represents a step function of unitary height.


This carrier signal is modulated with the considered signal. So, we can write:


� EINBETTEN Equation.2  ���.


Since p(t) is periodic, the carrier signal can be expanded into a Fourier-series:


� EINBETTEN Equation.2  ���


where (0  is the sampling frequency given by:


� EINBETTEN Equation.2  ��� ,


and the Fourier coefficients are:


� EINBETTEN Equation.2  ���.


Note the different approach mode to write the Fourier series expansion and the coefficients. It is nothing else but applying the aforementioned Euler’s formula.


As p(t) has unitary height and exists only for a time p, one obtains:


� EINBETTEN Equation.2  ��� .


The amplitude of Fourier-coefficients versus ( is represented in Figure 1.8.a.
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Figure 1.8. Amplitude spectra of the continuous and sampled signals with a finite switch duration p


a) Amplitude spectrum of the periodic rectangular pulse train p(t);


b) Amplitude spectrum of the continuous signal x(t);


c) Amplitude spectrum of the periodic pulse train xp(t).





The above result is nothing else but the Fourier transform of a unitary height and p width rectangular impulse that also can be derived by trigonometric transformation.


Hence:


� EINBETTEN Equation.2  ���.


Now, the Fourier transform application to the pulse train � EINBETTEN Equation.2  ��� yields:


� EINBETTEN Equation.2  ���


Hence higher frequency signal components are introduced by sampling. So, the Fourier transform results from the fundamental spectrum (Figure 1.8.b):


� EINBETTEN Equation.2  ���


and the complementary spectra � EINBETTEN Equation.2  ���(Figure 1.8.c) multiplied with the Fourier coefficients � EINBETTEN Equation.2  ���. Thus the sampled signal also contains the continuous spectrum of the input signal x(t) that is, however, multiplied by the factors� EINBETTEN Equation.2  ���. Note that no loss of information (of frequency component) occurs if the sampling frequency is such that the amplitude spectrum of the continuous signal does not exceed the interval � EINBETTEN Equation.2  ���.


In case of small switch duration the pulse train � EINBETTEN Equation.2  ��� is approximated by the impulse train � EINBETTEN Equation.2  ���. In order to obtain the Fourier transform for this case, we have just to remember that the � EINBETTEN Equation.2  ��� function can be approximated by a rectangular pulse of height � EINBETTEN Equation.2  ���:


� EINBETTEN Equation.2  ���.


The Fourier transform in this case will be:


� EINBETTEN Equation.2  ���


Hence the Fourier transform of the impulse train � EINBETTEN Equation.2  ��� approximated by � EINBETTEN Equation.2  ���-function is composed of the basic spectrum of the continuous signal � EINBETTEN Equation.2  ���:


� EINBETTEN Equation.2  ���


and the complementary spectra � EINBETTEN Equation.2  ��� that are multiplied by � EINBETTEN Equation.2  ���. So, the sampling operation introduces a gain of � EINBETTEN Equation.2  ���.
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