Description of discrete-time models using the z transform


The impulse representation of sampled signals provides a convenient way of introducing the z transform in describing the discrete-time signals, functions and models.


The z transform


Using Laplace transforms for mathematical description of discrete-time signals, we obtain Equation (1.95) as representation in the complex domain. To simplify much more the description and to obtain an algebraic representation of uniform sampled signals, the z transform is introduced by definition as a simply change in the complex variable:


� EINBETTEN Equation.2  ���,	(1.157)


where s is the Laplace transform variable and T0 is the sampling period. Equation (1.157) also gives the inverse relation:


� EINBETTEN Equation.2  ��� .	(1.158)


The z transform of an impulse train � EINBETTEN Equation.2  ��� given by Equation (1.94) will be:


� EINBETTEN Equation.2  ���	(1.159)


We have noted with X(z) the z transform of the discrete-time function � EINBETTEN Equation.2  ���. The transformation led to a power series in � EINBETTEN Equation.2  ���. Comparison of Equation (1.159) to Equation (1.94) shows that � EINBETTEN Equation.2  ��� may be seen as a „time-shift operator“ equalling to a time delay T0 . The coefficients in the obtained power series are the values of the continuous function at the sampling instants. The bi-univoc correspondence between the amplitude modulated impulse train � EINBETTEN Equation.2  ��� and its z transform is immediately seen.


The z transform is the discrete-time analogy of the Laplace transform for continuous systems. It is a convenient tool to study linear difference equations (discrete-time models) with or without initial conditions. The z transform maps a sequence of semi-infinite time sequence into a function of a complex variable. Notice the difference in range for the z transform and the time-shift operator calculus. The variable z is a complex variable and should be distinguished from the time-shift operator q, even if appearance suggests it.


The definition given by Equation (1.159) however, makes sense if X(z) converges. If � EINBETTEN Equation.2  ��� is limited, then X(z) converges for � EINBETTEN Equation.2  ���. This assumption can be made in the case of most discrete-time functions. The assumptions made at the Laplace transform, especially that � EINBETTEN Equation.2  ��� for � EINBETTEN Equation.2  ���, are also valid for the z transform.


Illustrative example


Find the z transform of the sequence:


� EINBETTEN Equation.2  ��� with x<0 for t<0.


Solution:


The sequence values can be considered as coefficients of the transform’s series expression, that is:


� EINBETTEN Equation.2  ���.


This is a geometric series that converges if � EINBETTEN Equation.2  ���. (� EINBETTEN Equation.2  ��� is said to be the radius of absolute convergence). The sum of the geometric series can be expressed as:


� EINBETTEN Equation.2  ���.


If � EINBETTEN Equation.2  ��� the preceding sequence corresponds to the sample sequence of a unit step function that starts just before the sampling begins. The z transform of this function is:


� EINBETTEN Equation.2  ���.


If � EINBETTEN Equation.2  ���, the original sequence can be considered as samples of an exponential function of form: � EINBETTEN Equation.2  ���. The z transform is obtained similarly and yields:


� EINBETTEN Equation.2  ���.


In general, the z transforms of more complex discrete-time functions are obtained by use of the same procedure as described in the preceding example. If a continuous time function � EINBETTEN Equation.2  ��� is given as the starting point, the procedure of finding its z transform is to first form the impulse sequence � EINBETTEN Equation.2  ��� and then use Equation (1.159) to get � EINBETTEN Equation.2  ���. An equivalent interpretation of this step is to send the signal � EINBETTEN Equation.2  ��� through an ideal sampler whose output is the impulse train � EINBETTEN Equation.2  ���, then take the Laplace transform of � EINBETTEN Equation.2  ��� to give � EINBETTEN Equation.2  ��� and then obtain � EINBETTEN Equation.2  ��� by substituting into Equation (1.157) or Equation (1.158).


Table 1.3 gives the z transforms of some commonly used (discrete) time functions. More extensive tables can be found in the literature.





Table 1.3. z transform of some (discrete-time) functions
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