Relation between the difference equations approach and the z transfer function approach


There is a strong connection between a difference equation and the corresponding z transfer function. Solution of a discrete-time model can be obtained with the aid of z transfer function formalism without performing the inverse z transformation. The solution leads to recurrence relationships that suit very well to solution by a digital computer.


Illustrative example


Determine the sampled step response of the discrete-time system given by the z transfer function:


� EINBETTEN Equation.2  ��� .


Solution:


a) We determine the solution by the use of the inverse z transform. The input signal is a unitary step signal that z transform is (see Table 1.3):


� EINBETTEN Equation.2  ���.


The z transform of the output signal is:


� EINBETTEN Equation.2  ���


where we have used partial fraction expansion in order to use Table 1.3 for the inverse z transform.


The sampled step response will be:


� EINBETTEN Equation.2  ���


The first few samples will be:


� EINBETTEN Equation.2  ���


b) We determine the solution by the use of relationship between the z transfer function and the difference equations. We start with writing the relation:


� EINBETTEN Equation.2  ���


and rewriting it in backward shifted form (by dividing with � EINBETTEN Equation.2  ��� and cross-multiplying):


� EINBETTEN Equation.2  ���.


Application of Equation (1.168) (theorem of real translation to the right) yields:


� EINBETTEN Equation.2  ��� ,


that is a regressive computational form similar to Equation (1.143). It gives the value of the output at the kth sampling instant in terms of values at preceding sampling instants. The first few samples are:


� EINBETTEN Equation.2  ���


Notice the differences between the two different ways computed values. They are due to truncation. To reduce the truncation errors high resolution floating-point operations are imposed for computers.


Relation between the time-shift operator calculus and the z transforms


There are strong formal relations between shift operator calculus and representations with z transforms. When manipulating discrete-time models given in form of difference equations the expressions obtained look formally very similar and in many textbooks there is no difference in notation. The situation is very similar to the difference between the differential operator D and the Laplace transform variable s for continuous-time systems. We have to notice again that q is an operator that acts on time sequences and z is a complex variable. Making distinction is necessary as the algebra of z transforms and shift operators are different. For example in operator calculus division is not allowed in any case but in z transforms calculus we can divide always with an arbitrary expression. This may throw away some modes (zeros and poles) when using the z transfer function calculus and common factors are cancelled. This may make sense in the further analysis only if the cancelled factors correspond to stable modes (effects, transients that vanish in time), but it may be strongly misleading if the cancelled factors are unstable.


Approximate calculation of z transfer function from s transfer function


Usually, the calculation of the z transfer function is performed using transform tables. For this either the impulse response g(t) in analytical form either the s transfer function G(s) in partial-fraction form is required. If there is a zero-order hold, G(s)/s has to be taken from the table. However, equations like Equation (1.159), Equation (1.182) or Equation (1.187) have more theoretical importance and are not very often used in engineering practice.


For small sampling periods different discretizing methods of linear differential equations are available. All of them approximate the time-differential with more or less accuracy. For engineers, the continuous-time model of a linear system appears often as the s transfer function as it permits easier algebraic manipulations. To obtain a corresponding z transfer function different approximations are also in use. Equation (1.157) shows that the variables s and z are related to each other in some respects as � EINBETTEN Equation.2  ���. The different approximations of the time-differential correspond to the series expansions:


� EINBETTEN Equation.2  ���,	(1.195)


� EINBETTEN Equation.2  ���.	(1.196)


The trapezoidal method for numerical integration leads to the approximation:


� EINBETTEN Equation.2  ���	(1.197)


The approximation given by Equation (1.197) is often called Tustin’s approximation or bilinear transformation. Using the methods above, the approximate z transfer function G(z) is obtained by simply replacing the argument s in G(s), where:


� EINBETTEN Equation.2  ���,	(1.198)


� EINBETTEN Equation.2  ���,	(1.199)


� EINBETTEN Equation.2  ���.	(1.200)


The methods are easy to be applied even for hand calculations but the approximations have some drawbacks. For example with the forward difference approximation it is possible that a stable continuous-time system is mapped into an unstable discrete-time one. When the backward difference approximation is used, a stable continuous-time system will always give a stable discrete-time system, but there could be unstable continuous-time systems that result stable discrete-time systems. Working with Tustin’s approximation, models of stable continuous-time systems are transformed into models of stable discrete-time systems and unstable continuous-time systems into unstable discrete-time systems. Hence, it is preferable to use Tustin’s method, even if calculus is a little complex.


The Laplace transform shows that there is a direct correspondence between variable s and the time-differential. We can use these approximations to transform a continuous-time model given by differential equations with the differential operator D in difference equations described by z transform formalism, by simple replacing of the D operator similar to s, using one of the Equations (1.197÷1.200). Of course, zero initial conditions must hold.


Discrete-time models with dead-time


In case of continuous-time systems the dead-time appears in their mathematical model as a time shift in the output variable as was established in Equation (1.91). Using the Laplace transform formalism the presence of the dead-time is characterised by the presence of the term � EINBETTEN Equation.2  ���, where � EINBETTEN Equation.2  ��� represents the dead-time value.


The simplest dead-time system can be described by:


� EINBETTEN Equation.2  ���	(1.201)


or by the corresponding transfer function:


� EINBETTEN Equation.2  ���.	(1.202)


If the dead-time is an integer multiple of the sampling period:


� EINBETTEN Equation.2  ���	(1.203)


then according to the shifting theorem results:


� EINBETTEN Equation.2  ���.	(1.204)


If we generalise the result for a discrete-time system given by the z transfer function G(z) that is preceded or followed by a dead-time element, the z transfer function will be:


� EINBETTEN Equation.2  ���.	(1.205)


Comparing to Equation (1.192), the discrete-time systems that include dead-time have the same type of mathematical model expressed by z transfer function as other dynamic elements. Contrary to models of continuous-time systems, dead-time elements can rather easily be included in models of discrete-time systems.


If the dead-time is not an integer multiple of the sampling period but it is a rational multiple of it, the discrete-time models with such time-delays can be handled with the aid of so called modified z transform. The modified z transform will be treated in the following section together with the intersampling behaviour of sampled-data systems. These lead to the so called discrete-time process oriented models or modulation models.
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