Discrete-time process oriented models


Most discrete-time models arise due to involving a digital computer. This is also true for computer-controlled systems, where with a zero-order hold the control signal is constant over the sampling period. The above developed discrete-time models describe the dynamic changes of the considered system variables from one sampling instant to another (stroboscopic models) by integrating the system equations (solving the model) over one sampling period. They are simple and fortunately most of the modelling problems can be handled with such models.


Unfortunately, sometimes these models are not enough as two or more different time-functions may have the same sampled values. Therefore it is useful to have models that give a more detailed description. The main problem here is to find out new mathematical models (discrete-time models) to describe what happens between the sampling instants. The models required are necessarily more complicated and are developed using the so called Linvill’s synthetic-sampler method. These models are called process-oriented models or modulation models as the system is modelled as an amplitude modulator followed by a linear continuous system. The modulation signal is a pulse train or idealised an impulse train, as it was already treated at the discrete-time signals.


To determine the behaviour between the sampling instants a fictious sampler is introduced in series with the actual sampler as in Figure 1.11 (the dotted box). The sampling rate of the fictious sampler is m times that of actual sampler (� EINBETTEN Equation.2  ���). The corresponding sampling period of the fictious sampler is � EINBETTEN Equation.2  ���. At submultiples of the sampling period � EINBETTEN Equation.2  ���, when the fictious sampler is closed, the actual sampler is open. Thus the fictious sampler does not disturb the operation of the continuous-time linear system given by its transfer function G(s). The fictious sampler does not actually exist, but it is merely employed as an aid for better understanding.
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Figure 1.11. Fictious sampler





Using Equation (1.176), the continuous-time output signal y(t) is:


� EINBETTEN Equation.2  ���,	(1.206)


where g(t) represents the weighting function or:


� EINBETTEN Equation.2  ���.	(1.207)


Submultiples of the sampling period are represented by the term � EINBETTEN Equation.2  ���, where � EINBETTEN Equation.2  ���. The value of the output signal at submultiple intervals is obtained by letting � EINBETTEN Equation.2  ��� in the preceding equation. This yields:


� EINBETTEN Equation.2  ���.	(1.208)


Let consider a similar fictious sampler at the system output. The output at the multiple sampling instants � EINBETTEN Equation.2  ��� may also be expressed as an impulse train:


� EINBETTEN Equation.2  ���.	(1.209)


Applying the Laplace transform will give:


� EINBETTEN Equation.2  ���.	(1.210)


Operating with the z transform variable of Equation (1.157) we will obtain the corresponding z transform:


� EINBETTEN Equation.2  ���.	(1.211)


Substituting � EINBETTEN Equation.2  ��� from Equation (1.208) into the preceding expression gives:


� EINBETTEN Equation.2  ���.	(1.212)


where substitution of � EINBETTEN Equation.2  ��� (� EINBETTEN Equation.2  ���) is possible and leads to the so called modified z transfer function � EINBETTEN Equation.2  ���. It is easy to demonstrate that:


� EINBETTEN Equation.2  ��� .	(1.213)


Thus, � EINBETTEN Equation.2  ��� is obtained by substituting � EINBETTEN Equation.2  ��� for z and � EINBETTEN Equation.2  ��� for � EINBETTEN Equation.2  ��� in G(z).


Illustrative example


For � EINBETTEN Equation.2  ��� determine the intersample step response of the control system given in the figure below,
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where � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���.


Solution:


Using Table 1.3. the z transfer function G(z) is:


� EINBETTEN Equation.2  ���.


The modified z transform � EINBETTEN Equation.2  ��� is obtained by substituting � EINBETTEN Equation.2  ��� for z and � EINBETTEN Equation.2  ��� for � EINBETTEN Equation.2  ��� in G(z). One obtains:


� EINBETTEN Equation.2  ���


It is easy to demonstrate that the modified z transform of the multiple sampled output signal will be:


� EINBETTEN Equation.2  ���


Notice that the multiple sampling of the output signal is fictious and appears corresponding in the transfer function of the control system.


To eliminate the fractional powers of z, let consider the variable � EINBETTEN Equation.2  ���. Thus,


� EINBETTEN Equation.2  ���


Cross-multiplying yields:


� EINBETTEN Equation.2  ���


The associated difference equation will be:


� EINBETTEN Equation.2  ���


The reference signal r(t) is the unitary step signal. It is sampled with the period � EINBETTEN Equation.2  ���, so it has values only at sampling instants equalling to integer multiples of the sampling period. When working with the variable w the sampled reference signal has values only at every mth instant:


� EINBETTEN Equation.2  ��� .


The first few computed samples will be:


� EINBETTEN Equation.2  ���


Notice that these results could be obtained by using the long division or the inversion formula, too.





The theory can be extended for discrete-time models with a time delay m that is less then the sampling period, in order to determine the intersampling behaviour. The modified z transform of a multiple sampled signal � EINBETTEN Equation.2  ��� is determined with the formula:


� EINBETTEN Equation.2  ���.	(1.214)


The inverse modified z transform is given by:


� EINBETTEN Equation.2  ���.	(1.215)


where the contour ( enclose all singularities of the integrand.


One can find extensive tables of modified z transforms and associated properties in literature. The modified z transform is useful in modelling multirate-sampling systems, too.
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