2.3. Electrical Systems





	The electrical theory can be categorised as direct-current (dc) or alternating-current theory. On the other hand it can be lumped or distributed-parameter model. A lumped model is used when the size of the electrical element is small compared to the signal’s wavelength. For example a relatively short wire can be considered lumped at a point and represented by the resistant element. In this part the relations of resistance, capacitance and inductance will be discussed.





Table 2.3.1 . Circuit elements, quantities and units





Quantities.�
Symbols�
Units�
Representation�
�
������Resistance�
R�
( (Ohm=volt/ampere)�
�
�
������Capacitance �
C�
F (farad=coulomb/volt))�
�
�
�����������Inductance�
L�
H (henry=volt-sec/amp)�
�
�
��������Voltage�
v�
v (volt)�
�
�
Charge�
Q�
coulomb ( N-m/volt)�
�
�
�Current�
i�
ampere (coulomb/sec)�
�
�
Flux�
(�
volt-sec�
�
�
������������Battery (plus int.resistance)�
--------�
---------�
�
�
�����Ground �
--------�
---------�
�
�



Some values for typical used circuits elements:


Resistance values range from 1000 (, 100000 (; capacitance values range from � EINBETTEN Equation.2  ���. Most of inductors have an inductance less then 1 H. The relation between the stored charge


and the voltage produced is described by the following equation :


� EINBETTEN Equation.2  ����



(2.3.1.)�
�
The relation between voltage and current for an inductor is:


� EINBETTEN Equation.2  ����



(2.3.2.)�
�



2.3.1. Circuit Laws.





	For electrical circuits Kirchhoff’s current and voltage laws are used. The current law or node law states that the sum of the currents entering the node equals the sum of the currents leaving the node. The positive direction of current flow is opposite to the flow of negative charge. The voltage law (loop law) states that the instantaneous algebraic sum of the voltages around any loop in a circuit is zero which really means that the voltage impressed on a closed loop equals the sum of the instantaneous voltage drops in the rest of the loop. The point in the circuit at which the voltage is zero is indicated by the ground symbol given in table 2.3.1.


The voltage drop across a resistance is : 


� EINBETTEN Equation.2  ����
(2.3.3.)�
�
The voltage drop across a capacitor is :


� EINBETTEN Equation.2  ���� EINBETTEN Equation.2  ����



(2.3.4.)�
�
The voltage drop across an inductor is:


� EINBETTEN Equation.2  ����
(2.3.5.)�
�



Example 2.3.1. Figure 2.3.1.


Develop a model for the voltage e across the capacitor in a circuit consisting of a voltage source v , a capacitor (capacitance C ) and a resistor (resistance R ), called the series RC circuit.


Solution : First step: Setting up the Model: Kirchhoff’s voltage law states that the voltage impressed on a closed loop equals the sum of the instantaneous voltage drops in the rest of the loop, that means:� EINBETTEN Equation.2  ��� relation which can be written as � EINBETTEN Equation.2  ���. The voltage e across the capacitor C can be expressed with the current i in the following way:� EINBETTEN Equation.2  ���.


Second step. General solution. Differentiating this with respect to time yields: � EINBETTEN Equation.2  ���, and from the first relation we have : � EINBETTEN Equation.2  ���.From these last two relations we obtain: � EINBETTEN Equation.2  ���, which can be written as follows: � EINBETTEN Equation.2  ���.This is the general solution.

















�








Exercise 2.3.2. 


Develop models for the circuits shown in Figure 2.3.2. The input is the voltage v the output is the current i .
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Solution of 2.3.2.d


First Step. Setting up the Model.


Kirchhoff’s voltage law states that the voltage impressed on a closed loop equals the sum of the instantaneous voltage drops in the rest of the loop. That means: � EINBETTEN Equation.2  ��� , which yields: � EINBETTEN Equation.2  ��� , where� EINBETTEN Equation.2  ���and � EINBETTEN Equation.2  ���and � EINBETTEN Equation.2  ���.This yields :� EINBETTEN Equation.2  ���. Differentiating both sides with respect to time we obtain:.


� EINBETTEN Equation.2  ����



(2.3.6.)�
�
This is a second-order differential equation whose general solution depends on two constants. Assuming that v (0) and Q(0) are given we can determine both constants, and can obtain the particular solution.





Example 2.3.3.


Develop a model for the following RLC circuit shown in figure 2.3.3. The inputs are R,L,C , v, the output is the current i flowing in the circuit. Determine the particular solution for the problem, assuming that no current is flowing and no charge is at t=0 .
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Solution. First Step. Setting up the Model.


Kirchhoff’s voltage law states that the voltage impressed on a closed loop equals the sum of the instantaneous voltage drops in the rest of the loop. That means: � EINBETTEN Equation.2  ���. According to Exercise 2.3.3. we obtain (2.3.6.) a second-order differential equation.


From the initial conditions (no current and no charge on the capacitor at t=0) we obtain: i(0)=A=0 and i’(0)=B=0 , where i’ means the derivative of i with respect to time.


Using the Laplace Transformation we obtain the following Laplace Transforms:


� EINBETTEN Equation.2  ���, � EINBETTEN Equation.2  ���


� EINBETTEN Equation.2  ���. � EINBETTEN Equation.2  ���


where s is a positive real parameter. Substituting the quantities for their given values in (2.3.6.) we obtain the following  differential equation:


� EINBETTEN Equation.2  ���. Using the previous Laplace Transforms of the functions in this equation we obtain the following algebraic equation with unknown I with respect to s: � EINBETTEN Equation.2  ���. Solving it with respect to I and writing the obtained fraction in terms of partial fractions we have: � EINBETTEN Equation.2  ���.


Taking the inverse Laplace transforms of both sides we have:


� EINBETTEN Equation.2  ��� The first two terms die down in a very short time ( this is the transient or unsteady state current) and what remains (the last two terms )is the steady state current, which is a periodic function  and can be written as:


� EINBETTEN Equation.2  ���.





Example 2.3.4. 


Develop models for the circuits shown in Figure 2.3.5. The input is the voltage v  the output is the voltage e.
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Solution a.).First step. Setting up the Model.


	According to the voltage law the applied voltage equals the voltage drops across the elements in the circuit. That means: � EINBETTEN Equation.2  ��� which yields : � EINBETTEN Equation.2  ���  The output that is looked for is � EINBETTEN Equation.2  ���, and the only input is v .Then we have � EINBETTEN Equation.2  ���. We have to eliminate i, and to achieve this goal we differentiate this relation and obtain: � EINBETTEN Equation.2  ���. From this relation  multiplying it by L and dividing it by R we obtain � EINBETTEN Equation.2  ���. Now substituting � EINBETTEN Equation.2  ��� for e, we have � EINBETTEN Equation.2  ���. This is the mathematical model corresponding to the problem.


Solution c.).First step. Setting up the Model.


	According to the voltage law the applied voltage equals the voltage drops across the elements in the circuit.  That means: � EINBETTEN Equation.2  ���. The output that is looked for is � EINBETTEN Equation.2  ���. We know that � EINBETTEN Equation.2  ���. This yields : � EINBETTEN Equation.2  ���. Differentiating it with respect to time we have � EINBETTEN Equation.2  ���. In order to eliminate the time derivative of the current from this relation we consider the following relation:� EINBETTEN Equation.2  ���, which differentiating with respect to time yields: � EINBETTEN Equation.2  ���. This results: � EINBETTEN Equation.2  ���. From this relation we obtain: � EINBETTEN Equation.2  ���.


Example 2.3.6.


Develop a model for the circuit in figure 2.3.5. where the voltage source is a battery. The inputs are � EINBETTEN Equation.2  ���.The outputs are � EINBETTEN Equation.2  ���.
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Solution. First Step. Setting up the Model.


We will decompose the given circuit in two loops as follows, and will apply the Kirchoff’s voltage Law (or loop law) for the obtained loops:
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Now we can write: in loop 1: � EINBETTEN Equation.2  ���, in loop 2 : � EINBETTEN Equation.2  ��� . According to Kirchhoff’s current law (or node law ) we also have :� EINBETTEN Equation.2  ���.


Second Step: We determine the particular solution. We can set up the following simultaneous equations where the quantities have been substituted for their values:


� EINBETTEN Equation.2  ���


From this equations we obtain :� EINBETTEN Equation.2  ���.


Third Step. Checking the Results.





Exercise 2.3.7.


Develop a model for the following electrical networks, shown in Figure 2.3.7.a. and 2.3.7.b, and find the currents, assuming that all charges and currents are zero when the switch is closed at t=0.
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Solution a. Setting up the Model.


We have denoted by i1 the current in the left-hand loop and i2 the current in the right-hand loop. The mathematical model is obtained from Kirchhoff’s voltage law used for the left-hand, respectively for the right-hand loop. The left hand loop yields :� EINBETTEN Equation.2  ��� 


The right hand loop yields :� EINBETTEN Equation.2  ���. Differentiating with respect to time we obtain:� EINBETTEN Equation.2  ���. After some algebraic operations we obtain the following system of equations:� EINBETTEN Equation.2  ���. This system can written in matrix form: � EINBETTEN Equation.2  ��� , where � EINBETTEN Equation.2  ���. We substitute I for :� EINBETTEN Equation.2  ���, where � EINBETTEN Equation.2  ��� and  � EINBETTEN Equation.2  ���. we obtain: � EINBETTEN Equation.2  ���. The two unknown x and y can be determined from the following two conditions: � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���. From the second one we obtain :� EINBETTEN Equation.2  ���. The equation � EINBETTEN Equation.2  ��� will the following values : � EINBETTEN Equation.2  ��� (called eigenvalues) and corresponding to these scalars we obtain the vectors: � EINBETTEN Equation.2  ��� (called eigenvectors).


Than the general solution of the system is :� EINBETTEN Equation.2  ���(matrix form) , and the scalar form: � EINBETTEN Equation.2  ���. The constants can be determined from the initial conditions, namely no current and no charge in the system when the switch closed. This results: � EINBETTEN Equation.2  ���. That means that after a short period the transient will be zero and the steady-state current will be :� EINBETTEN Equation.2  ��� which means that only in the first loop flows current , after the capacitor has been charged.


Solution b. Analogously we have :� EINBETTEN Equation.2  ���, respectively: � EINBETTEN Equation.2  ���.
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Figure 2.3.1. RC-circuit
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Figure 2.3.2. Electric circuits.
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Figure 2.3.3. RLC-circuit.





e





v





e





L





R





v





R1





R2





e





C





v





R1





C





R2





a.)











b.)





c.)





Figure 2.3.5.





� EINBETTEN Equation.2  ���
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� EINBETTEN Equation.2  ���





� EINBETTEN Equation.2  ���





� EINBETTEN Equation.2  ���





� EINBETTEN Equation.2  ���





Figure 2.3.6.





v





� EINBETTEN Equation.2  ���





� EINBETTEN Equation.2  ���





� EINBETTEN Equation.2  ���





� EINBETTEN Equation.2  ���
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Figure 2.3.7.a.
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Figure 2.3.7.b.











