2.8. Pneumatic Systems





2.8.1. Pneumatic Elements.





	The working medium in a pneumatic device is a compressible fluid such as air. There are some advantage in using such devises, such as the air may be exhausted to the atmosphere at the end of the devices work, on the other hand , the response of pneumatic systems is slower than that of hydraulic systems because of the compressibility of the working fluid. For compressible fluids the mass and volume flow rates are not interchangeable . Since mass is conserved (volume not) , pneumatic systems analysis uses mass flow rate  denoted by :� EINBETTEN Equation.2  ���, whereas the volume flow rate is denoted by q .Because of the relatively low viscosity and density of gases, their flow is more likely to be turbulent. Normally the only effort variable is pressure. he kinetic energy of gas is usually negligible , so the inductance relation is not employed.





2.8.2. Thermodynamic Properties of Gases





	Temperature , pressure, volume and mass are functionally related for gases. The model most often used to describe this relation is the perfect gas law , which describes all the gases if the pressure is law enough and the temperature high enough. This law states:


� EINBETTEN Equation.2  ����
(2.8.2.1.)�
�
where p is the absolute pressure of the gas with volume V , m is the mass, T is its absolute temperature, and � EINBETTEN Equation.2  ��� the gas constant that depends on the particular type of gas. The values of this constant and properties of air at standard temperature and pressure (STP) are given in the Table 2.8.2.1. below:





Table 2.8.2.1. Properties of Air at STP





Constants�
Units�
�
Gas constant Rg �
286.748N-m / kg-K�
�
Specific heats � EINBETTEN Equation.2  ����
1004.37 J/kg-K     ;     715.55 J/kg-K�
�
Specific heat ratio � EINBETTEN Equation.2  ����



1.40 (no unit)�
�
Mass density (�
1.2885 kg/m3�
�
Viscosity (�
1.58(10-7 N-sec/m2�
�



	The perfect gas law allows us to solve for one out of the four variables when the other three are given. Usually we do not know three of them, we need additional information. This information is usually available in the form of pressure-volume relation, called process relation.


	Assuming the mass is constant the following processes are possible(subscript 1 refers to start, subscript 2 refers to end of the process): 


1.) Constant -Pressure Process (� EINBETTEN Equation.2  ���). Then the perfect gas law implies � EINBETTEN Equation.2  ���. If the gas receives heat from the surroundings, some of it raises the temperature and some expands the volume.


2.) Constant-Volume Process (� EINBETTEN Equation.2  ���). Here we have : � EINBETTEN Equation.2  ���. When heat is added to the gas , it merely raises the temperature since no external work is done in a constant-volume process.


3.) Constant-Temperature Process (� EINBETTEN Equation.2  ���). Thus we have : � EINBETTEN Equation.2  ���. If heat is added to the gas does not increase the internal energy of the gas because of the constant temperature . It only does external work.


4.) Reversible Adiabatic Process (Isentropic). Adiabatic means that no heat is transferred to or from the gas. Reversible means the gas and its surroundings can be returned to their original thermodynamic conditions. This process is described by :� EINBETTEN Equation.2  ���.


Since no heat is transferred , any external work done by the gas changes its internal energy by the same amount. Thus its temperature changes, and that is :� EINBETTEN Equation.2  ���, where W is the external work. W is positive if work is done on the surroundings.


5.) Polytropic Process. A real process can be more accurately modelled as the previous four , by properly choosing the exponent n in the polytropic process:� EINBETTEN Equation.2  ��� If the mass m is constant , this general process reduces to the previous processes if n is chosen as � EINBETTEN Equation.2  ��� respectively, and if the perfect gas law is used.





2.8.3. Pneumatic Resistance. Gas Flow through an Orifice.





	In the pneumatic devices rarely occurs laminar flow. However, if  in the pipe flow is a laminar and incompressible flow the Hagen-Poiseuille formulas (2.6.5.) and (2.6.6.)can be used. For turbulent flow if the fluid is incompressible the (2.6.9.) and (2.6.10.) formulas can be used. Here we determine pneumatic resistance when the flow is compressible and subsonic or when the flow is compressible and supersonic. 


	The theory of gas flow through an orifice provides the basis for modelling other pneumatic components. We assume that a perfect gas law applies and that the effects of viscosity (friction) and heat transfer a negligible, hence the isentropic process is assumed.


The flow is presented in Figure 2.8.3.1.
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	The cross section of the orifice is A , the upstream absolute pressure is p1  and the absolute back pressure pb  is the pressure eventually achieved downstream from the orifice. Point 2 is that point in the orifice where jet where the jet area is minimum. The critical value of the black pressure is


� EINBETTEN Equation.2  ����



(2.8.3.1.)�
�
For air we have � EINBETTEN Equation.2  ��� which results :


� EINBETTEN Equation.2  ����
(2.8.3.2.)�
�
The expressions for the mass flow rate as functions of the pressures can be obtained using Newton’s laws, mass conservation law , and the isentropic process formula. For the subsonic case  (� EINBETTEN Equation.2  ��� )the mass flow rate is :


� EINBETTEN Equation.2  ����



(2.8.3.3.)�
�
where Cd  is the experimentally determined discharge coefficient that accounts for viscosity effects and T1 is the absolute temperature upstream from the orifice.


For the sonic case (� EINBETTEN Equation.2  ���) we have:


� EINBETTEN Equation.2  ����



(2.8.3.4.)�
�
Valves or other flow restrictions in pneumatic systems can be modelled as an orifice by treating the term Cd A as an equivalent orifice area , which can experimentally determined. The product Cd A is the effective cross sectional area of the component.





Example 2.8.3.1.


Estimate the effective cross-sectional area for a valve tested under the following conditions. The inlet pressure were � EINBETTEN Equation.2  ��� (atmospheric pressure 1Pa). The inlet air temperature was� EINBETTEN Equation.2  ���and the measured mass flow rate was � EINBETTEN Equation.2  ���.


Solution. According to (2.8.3.3.) we obtain:  � EINBETTEN Equation.2  ���.


It is very typical in pneumatic systems that we have a small pressure drop across the component. Thus the flow is frequently subsonic. Also, the pressure changes consist of small fluctuations about an average or steady-state constant pressure value. Under this circumstances the compressible flow resistance can be modelled in the form of the turbulent resistance relation (2.6.9), written here as :


� EINBETTEN Equation.2  ����
(2.8.3.5.)�
�



Example 2.8.3.2.


Develop a model and find the turbulent resistance RT for a pneumatic element modelled as an orifice shown in Figure 2.8.3.1.. The input air pressure p1 fluctuates about the steady-state pressure ps by a small amount pi . Thus p1 = ps + pi . Similarly the back pressure can be written as pb = ps +p0 , where the resistance of the orifice p0 is negligible small in comparison to steady-state pressure.


Solution. because both p1 and p0 are small compared to ps , we have  ps +p0 > 0.528(ps + pi), which means the flow is subsonic. From (2.8.3.3.) and the given expressions for the pressures we obtain: 


� EINBETTEN Equation.2  ��� which can be written as :


� EINBETTEN Equation.2  ����



(2.8.3.6.)�
�
From this relation (2.8.3.6.) we obtain :


� EINBETTEN Equation.2  ����



(2.8.3.7.)�
�
We can remark the similarity of this result to the expression of non-linear liquid orifice flow resistance R0 : � EINBETTEN Equation.2  ���, which is for volume flow rate. From the perfect gas law: � EINBETTEN Equation.2  ��� we obtain :


� EINBETTEN Equation.2  ����



(2.8.3.8.)�
�
As a consequence the mass flow rate of the gas can be written as: 


� EINBETTEN Equation.2  ����



(2.8.3.9.)�
�
In the case � EINBETTEN Equation.2  ��� we can write :


� EINBETTEN Equation.2  ����



(2.8.3.10.)�
�



2.8.4. Pneumatic Capacitance.


In pneumatic systems mass is the quantity variable and pressure is the effort variable. Thus pneumatic capacitance is the relation between stored mass and pressure. We take pneumatic capacitance to be the system’s compliance as defined in section 2.6., that means the capacitance is the ratio of the change in stored mass to the change in pressure:


� EINBETTEN Equation.2  ����



(2.8.4.1.)�
�
For a container of constant volume V with a gas density ( this expression may be written as: 


� EINBETTEN Equation.2  ����



(2.8.4.2.)�
�
If the gas undergoes a polytropic process we have :


� EINBETTEN Equation.2  ����



(2.8.4.3.)�
�
and � EINBETTEN Equation.2  ���. For a perfect gas , this shows the capacitance of the container to be :


� EINBETTEN Equation.2  ����



(2.8.4.4.)�
�
Note: the same container can have different capacitance for different expansion processes, temperatures, and gases, since C depends on � EINBETTEN Equation.2  ���.


Example 2.8.4.1.


Find the capacitance of air in a rigid container with volume 0.5m3 for an isothermal process. Assume the air is initially at room temperature 293 K.


Solution. The filling of the container can be modelled as an isothermal process if it occurs slowly enough to allow heat transfer to occur between the air and its surroundings. In this case n=1 and from (2.8.4.4.) we have � EINBETTEN Equation.2  ���.





2.8.5. Modelling of pneumatic systems.





	In pneumatic analysis the fluid inertia is neglected thus the simplest model of such systems is a resistance-capacitance model for each mass storage elements.





Example 2.8.5.1. Gas Flow into a Rigid Container.


Develop a dynamic model of the pressure change p in the container as a function of the inlet pressure p1 for the system in which air passes through a valve (modelled as an orifice) shown in Figure 2.8.5.1.. Assume an isothermal process and that p and p1 are small variations from the steady-state pressure ps .


Solution. Setting up the Model. From mass conservation law the rate of mass increase in the container equals the mass flow rate through the valve. Thus :


� EINBETTEN Equation.2  ���. But we also have :� EINBETTEN Equation.2  ���. In this relations C and RT are given by the relations (2.8.4.4.) and (2.8.3.7.), with T=T1  and n=1. The required model is :


� EINBETTEN Equation.2  ����
(2.8.4.5.)�
�
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Example 2.8.5.2. Gas Flow into a Bellows.


Develop a model for the dynamic behaviour of x with p1 a given input of the bellows shown in Figure 2.8.5.2.
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	The pneumatic bellows shown in Figure 2.8.5.2., is an expendable chamber usually made of copper because of this metal’s good heat conduction and elastic properties. The elasticity of the bellows is modelled as a spring. The spring constant for the bellows is k .The displacement x is transmitted by a linkage or beam balance to a pneumatic valve regulating the air supply. We assume that the bellows expands and contracts slowly, therefore the  product of the mass and acceleration is negligible , and a force balance gives:


� EINBETTEN Equation.2  ����
(2.8.4.6.)�
�
where the force exerted by the internal pressure is pA , A is the area of the bellows, and x is the displacement of the right hand side (left hand side is fixed). The volume V of the bellows is :V=Ax and thus:  pV=Ax(kx/A)=kx2  . The assumption of a slow process suggests an isothermal process. Therefore the time derivative of the perfect gas law gives: � EINBETTEN Equation.2  ���. From the law for resistance :� EINBETTEN Equation.2  ��� we obtain :� EINBETTEN Equation.2  ���. Since :� EINBETTEN Equation.2  ���, we obtain the following mathematical model:


� EINBETTEN Equation.2  ����



(2.8.4.7.)�
�
This model is non-linear because the product between x and its derivative and because of the signed squared root relation on the right hand side. The pneumatic capacitance of the bellows is found from the: � EINBETTEN Equation.2  ���. Note that the capacitance is variable because it depends on the displacement x .
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Figure 2.8.3.1.





Figure 2.8.5.1.
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Figure 2.8.5.2.











