2.9. Thermal Systems.





	In thermal systems energy is stored and transferred as heat. There are lots of devices as examples of thermal systems as furnaces, chemical processes, food processing , heating devices.


	The effort variable is the temperature (the temperature difference). This can cause a heat transfer rate by one or more of the following resistance modes: a.) conduction; b.) convection; c.) radiation. The transfer of heat causes a change in the system’s temperature. 	Thermal capacitance relates the system temperature to the amount of heat energy stored 


In order to have a single lumped-parameter model we must be able to assign a single temperature that represents the system, which usually is very difficult. When it can not several coupled lumped-parameter models are used  or even distributed-parameter model will be required.


	Unlike current in an electrical circuit , the flow of the heat often does not occur along a single , simple path, but might involve more than one mode.  If the convective mode is present, the analysis must also consider a fluid system with its difficulties. The necessary coefficients for our thermal resistance is obtained from analytical and empirical results.


	The quantities , their symbols and their units are given in the Table 2.8.1. below.





Table 2.8.1. Typical Units in Heat Transfer





Quantity and Symbol�
Unit in SI�
�
Heat energy Qh�
J�
�
Heat flow rate qh�
W�
�
Thermal conductivity k�
W/m-K�
�
Specific heat c�
J/kg-K�
�
Film (convection)coefficient h�
W/m2 -K�
�



2.9.1. Heat Transfer.





	Heat can be transferred in three ways : by conduction (diffusion through a substance); convection ( fluid transport); radiation (mostly infrared waves).The effort variable causing a heat flow is a temperature difference. The constitutive relation takes a different form for each of the three heat transfer modes. The linear model for heat flow rate is given by Newton’s law of cooling.


� EINBETTEN Equation.2  ����
(2.9.1.1.)�
�
We have different values of the resistance for different modes. These are :


� EINBETTEN Equation.2  ����



(2.9.1.2.)�
�
for convection , where h is the film coefficient of the fluid-solid interface, and 


� EINBETTEN Equation.2  ����



(2.9.1.3..)�
�
for conduction , where k is the thermal conductivity of the material , A is the surface area , and d is the material thickness. Typical units for h and k are given in following table: 


�
Table 2.9.2.





Material�
Therm.conduc. k (SI)�
Specific heat c (SI)�
Mass density ( (SI)�
�
Copper 273 K�
387.5648�
0.4899�
8916.42�
�
Concrete 293 K�
1.1246�
1.137�
2082.216�
�
Fibre insulating board 294K�
0.0484�
-�
237.08�
�
Plate glass 294 K�
0.7612�
1�
2705.85�
�
Air 300 K (1 Pa)�
0.02622�
1.2922�
1.1854�
�
Water 293 K�
0.5969�
5.3741�
1000�
�



	Significant heat transfer can occur by radiation for example solar energy. Thermal radiation produces heat when it strikes a surface capable of absorbing it. It can also be reflected or refracted and all three mechanisms can occur at a single surface. When two bodies are in visual contact a mutual exchange of energy occurs by emission and absorption. The net transfer of heat occurs from the warmer to the colder body. This rate depends on material properties ,geometric factors, and the amount of surface area involved. As a consequence of the Stephan-Boltzman law the heat transfer rate is :


� EINBETTEN Equation.2  ����
(2.9.1.4.)�
�
Where T1 and T2 are the absolute body temperatures, and ( is a factor incorporating other effects and usually it is very small. Thus the effect of radiation heat transfer is usually negligible compared to the conduction or conviction heat transfer, unless the temperature of one body is much greater than that of the other.


Fourier’s law of heat conduction states that the heat transfer rate per unit area within a homogeneous substance is directly proportional to negative temperature gradient and can be written as :


� EINBETTEN Equation.2  ����
(2.9.1.5.)�
�
where A is the area in question.





2.9.2. A Wall Model.





	Assume that the wall material (Figure 2.9.2.1)is homogeneous and it is to be treated with a lumped approximation. The wall temperature is considered constant and is denoted by Tm .The temperatures T1 and T2 are the temperatures in the surrounding fluid just outside the wall surface. There is a temperature gradient on each side of the wall across a thin film of fluid adhering to the wall. This film is known as the thermal boundary layer. The film coefficient is h is the measure of the conductivity of this layer. The temperatures outside of this layers are Ti and T0 .The thermal capacitance C is the product of the wall mass times its specific heat. The capacitance of the boundary layer is generally negligible because of its small fluid mass . Thus no heat is stored in the layer , the heat flow rate through the layer must equal the heat flow rate from the surface to the mass at temperature Tm considered to be located at the centre of the wall. The length of this latter path is d/2. For the left hand side this gives:


� EINBETTEN Equation.2  ����



(2.9.2.6.)�
�
Solving it for T1 we have :


� EINBETTEN Equation.2  ����



(2.9.2.6.)�
�
Similar equations can be obtained for � EINBETTEN Equation.2  ���.


An energy balance for the wall mass gives:


� EINBETTEN Equation.2  ����



(2.9.2.7.)�
�
After T1 and T2 have been eliminated this gives an equation for Tm with Ti and T0 as inputs.


Denoting 


� EINBETTEN Equation.2  ����



(2.9.2.8.)�
�
we obtain the following model:


� EINBETTEN Equation.2  ����



(2.9.2.9.)�
�
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Example 2.9.2.1.


Derive the series law for thermal resistance, and explain under what conditions it is valid.


Solution. Assuming the wall capacitance C is very small, or the rate of change of Tm is very small then the left-hand side of the relation (2.9.2.9.) can to be taken zero, which results that the right-hand side of the  same relation is zero as well. This yields:


� EINBETTEN Equation.2  ����



(2.9.2.10.)�
�
and the heat flow rate is :


� EINBETTEN Equation.2  ����



(2.9.2.11.)�
�
That means that the total resistance between � EINBETTEN Equation.2  ���.This yields that the total resistance can be written as: 


� EINBETTEN Equation.2  ����
(2.9.2.12.)�
�
This is the series law for thermal resistance. From the general definition of a series connection , the rate variable must be the same for all elements. Our wall model meets this requirement because all the elements have the same heat flow rate under the stated assumptions. Thermal elements that experience the same temperature difference are said to be in parallel , and their resistance combined in the same manner as parallel electrical resistance. For three elements that is :


� EINBETTEN Equation.2  ����



(2.9.2.13.)�
�



2.9.3. A Solar Thermal Energy System.





	In a solar heating unit with flat-plate collectors in which the working fluid may be air or water (antifreeze),the fluid is circulated through the collectors where it picks up energy that will be stored in a storage element (rocks when air is circulated or tank when water is circulated). In our case a water using system will be described and the following input output temperature relation is employed:


� EINBETTEN Equation.2  ����
(2.9.3.1.)�
�
where the constant ( is the effectiveness factor for the exchanger and it usually be designed to be 0.9.
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Let the mass density and specific heat of the water be � EINBETTEN Equation.2  ���.Then the thermal energy stored in the tank water is � EINBETTEN Equation.2  ���, where V is the tank volume. The rate of the energy input to the fluid from the collector is a function of fluid’s temperature rise � EINBETTEN Equation.2  ���as it passes through the collector. This rate is given by � EINBETTEN Equation.2  ���, where � EINBETTEN Equation.2  ���are properties of the collector fluid. This term can also be considered the energy input rate to the tank from the heat exchanger, since the outlet temperature Ti of the exchanger is determined by T0 and ( through (2.9.3.1.). The energy loss rate from the tank due to the demand is � EINBETTEN Equation.2  ���. Therefore an energy balance on the tank water shows that :


� EINBETTEN Equation.2  ����



(2.9.3.2.)�
�



where ( is a switching function representing a thermostatic controller used to turn circulator pump on or off. We wish to stop collector circulation whenever the outlet temperature of the collector is less then the tank temperature (otherwise, energy would be transferred to the collector from the tank!)The simplest representation of ( is :


� EINBETTEN Equation.2  ����



(2.9.3.3.)�
�
The equation (2.9.3.2.) can not yet be used , because T0 and Ti are not given inputs. The appropriate input variables instead of T0 and Ti are S = solar insolation energy absorbed by the collector, per unit area, per unit time, respectively Ta the ambient (outside) temperature. The basic collector equation that relates these two variables to the energy delivered to the fluid is :


� EINBETTEN Equation.2  ����
(2.9.3.4.)�
�
where A is the collector area , U is its loss coefficient ( instead of it is also used the collector’s resistance R=1/AU), and F is the collector heat removal factor. The last term represents the heat loss to the ambient air. Solving the simultaneous equations of (2.9.3.1.) and (2.9.3.4.) with respect to T0 and Ti we obtain ::


� EINBETTEN Equation.2  ����
(2.9.3.5.)�
�
which yields the following model:


� EINBETTEN Equation.2  ����



(2.9.3.6.)�
�



Example 2.9.3.1.


Develop a model for the solar hot water system, neglecting thermal losses through the tank walls, under following circumstances:


Collector area A= 2 m2 , collector loss coefficient U = 8W/m2 -K, heat removal factor F=0.834 (dimensionless), collector volume flow rate q=0.06m3 /hr, collector fluid density (=1200kg/m3 , collector fluid specific heat c=6000J/kg-K, tank volume V=0.099m3 , water supply temperature Ts =288 , K heat exchanger effectiveness (=0.9(dimensionless).


According to the relations (2.9.3.1.), (2.9.3.2.) and (2.9.3.3.) we obtain :


� EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� which yields the following model:


� EINBETTEN Equation.2  ��� where ( is given in (2.9.3.3) and the input variables must be in the following units: Ta = K, S = J/hr-m2 and qd = m3 /hr.





�SEITE  �








�SEITE  �58�











Tm





C





d/2





qh1





qh2





T1





T2





Ti





T0





h1





h2





Figure 2.9.2.1.		A wall model.
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Figure 2.9.3.1. Solar hot water system











